The world’s most powerful telescopes have a lot of work to do. They’re tasked with helping us unravel the mysteries of the universe, like dark matter and dark energy. They’re burdened with helping us find other habitable worlds that might host life. And they’re busy with a multitude of other tasks, like documenting the end of a star’s life, or keeping an eye on meteors that get too close to Earth.
Holy moly, that was awesome! Incredible, fantastic, amazing…there just aren’t the words to describe what it is like to experience totality. While I’m trying to come down to Earth and figure out how to explain how wonderful this was, enjoy the beautiful images captured by our readers from across the US and those from across the world who traveled to capture one of nature’s most spectacular events: a total solar eclipse.
The images from those seeing partial eclipses are wonderful, as well, and we’ll keep adding them as they come in (update, we just got some from Europe too). Great job everyone!
Just to get you in the mood for the upcoming total solar eclipse — now less than two weeks away — our Solar System put on a little eclipse display of the lunar kind on August 7. The full Moon passed through part of the Earth’s umbral shadow, and the timing made this partial lunar eclipse visible in parts of Europe and Africa.
Thanks to our friends around the world who posted in Universe Today’s Flickr page, we’ve got images to share! Enjoy the views! Click on all the images to see larger versions of them on Flickr. The lead image link is here.
And for those of you in the path of the August 21 solar eclipse, please feel free to share your images on our Flickr page, and we may feature them in an upcoming article.
Here is a video of additional images from Leonard Mercer:
You can watch a reply of a live webcast from the Virtual Telescope Project of the partial lunar eclipse seen from Rome:
Although there’s been quite a bit of hype about the Super Moon on November 13, 2016, to many, the full Moon tonight may have appeared quite similar to other full Moon’s you’ve seen. Yes, the “super-ness” of this Moon, while noteworthy, is fairly imperceptible. While, as our own David Dickinson noted in his preview article, this full Moon is not only the closest for the year, but the nearest Full Moon for a 80 year plus span. However, the closest full moon of 2017 will be only 0.02% farther away than this one.
But any chance to get the public to look up at the night sky is a good one! And we’ll also take this opportunity to share some of the great images from around the world posted on Universe Today’s Flickr page, as well as on social media. Enjoy!
Obviously, you’ve seen timelapse videos of the night sky because we share them here on Universe Today all the time. But you’ve probably not seen a video like this one before. This one isn’t a timelapse, and you’ll see the night sky in all its splendor, in real time.
“I think this one may be the beginning of something damn interesting,” said filmmaker Ben Canales, who along with cohort John Waller of Uncage The Soul Productions, shot this video with new low-light technology. Using the new Canon MH20f-SH, which has the capability of shooting at 400,000 ISO, they were able to “film in the quiet moments that have been impossible to capture until now.”
“Since 2013, I’ve been tinkering with all sorts of camera/lens/software combinations trying to move beyond a long exposure still to real time video of the stars,” Canales said on Facebook. “Sooner or later, we have to move beyond a frozen photo of the stars to hear, see, feel what it is really like being out there!”
In addition to showcasing this wonderful new low-light shooting, Infinity² really captures the emotional side of amateur astronomy and the beauty of being under the night sky. He took a group of high school students out to witness the Perseid Meteor Shower in Oregon, and the students got together with the Oregon Star Party. Together, they answer the simple question “What do you feel?”
As Canales says, “Something internal and personal draws us out to the night sky.”
The winners of the 7th annual Earth & Sky Photo Contest have been announced, and wow, these images are absolutely stunning! The contest really highlights the beauty of the night sky, and its mission is to spread the message to cut down on light pollution while helping to preserve the last remaining natural night environments and night skies in the world. The contest was organized by The World at Night (TWAN) and other sister organizations.
“The sky above us is an essential part of our nature, a heritage for us and other species on this planet,” said TWAN founder and contest chair, Babak Tafreshi.”The contest main goal is to present the night sky in this broader context that helps preserving the natural night sky by reconnect it with our modern life.”
See more winning photos below:
Just last week, a group of Italian and American scientists unveiled a new global atlas of light pollution, and sadly, they said the results show the Milky Way is “but a faded memory to one-third of humanity and 80 percent of Americans.”
“We’ve got whole generations of people in the United States who have never seen the Milky Way,” said Chris Elvidge, a scientist with NOAA’s National Centers for Environmental Information. “It’s a big part of our connection to the cosmos — and it’s been lost.”
These photos from Earth & Sky Contest really display that important connection, with people and places on Earth being a big part of many of the images – the classic definition of “TWAN-style” photography. According to the contest theme of “Dark Skies Importance,” the submitted photos were judged in two categories: “Beauty of The Night Sky” and “Against the Lights.”
“The selected images are those most effective in impressing public on both how important and delicate the starry sky is as an affecting part of our nature, and also how bad the problem of light pollution has become,” TWAN said in their press release. “Today, most city skies are virtually devoid of stars. Light pollution (excessive light that scatters to the sky instead of illuminating the ground) not only is a major waste of energy, it also obscures the stars, disrupts ecosystems and has adverse health effects.”
The winning images were chosen on their “aesthetic merit and technical excellence,” said David Malin of the judging panel, who is well-known pioneer in scientific astrophotography. “We believe they accurately reflect the state of the art in TWAN-style photography. The competition encourages photographers with imagination to push their cameras to their technical limits, and to produce eye-catching images that appear perfectly natural and are aesthetically pleasing.”
The contest was open to anyone of any age, anywhere in the world; to both professional and amateur/hobby photographers. It has been an annual event since 2009 (initially for the International Year of Astronomy) by TWAN, the National Optical Astronomy Observatory, and Global Astronomy Month from Astronomers Without Borders. The contest supports efforts of the International Dark Sky Association (IDA) and other organizations that seek to preserve the night sky.
The images were taken in 57 countries and territories including Algeria, Antarctica, Australia, Austria, Bahamas, Belgium, Bolivia, Brazil, Canada, China, Colombia, Croatia, Czech Republic, Egypt, England, Estonia, Finland, France, Germany, Greece, Guatemala, Guam, Hungary, Iceland, India, Indonesia, Iran, Ireland, Italy, Japan, Jordan, Kenya, Lithuania, Madagascar, Malaysia, Malta, Morocco, Norway, New Zealand, Paraguay, Peru, Philippines, Poland, Reunion (France), Romania, Russia, Scotland, Sri Lanka, South Africa, Spain, South Africa, Sri Lanka, Sweden, Switzerland, Tanzania, Thailand, Ukraine, and USA.
See all the images and more information about them at TWAN. Click on each image for larger versions. A larger version of the lead image can be found here.
You can see the global atlas of light pollution here, which was created from data from the NOAA/NASA Suomi National Polar-orbiting Partnership satellite and calibrated by thousands of ground observations.
And here’s a video that includes all the winning images:
When it comes to my style of photography, preparation is a key element in getting the shot I want.
On this specific day, we were actually planning on only shooting the low Atlantic clouds coming into the city of Cape Town. This in itself takes a lot of preparation as we had to keep a close eye on the weather forecasts for weeks using Yr.no, and the conditions are still unpredictable at best even with the latest weather forecasting technology.
We set out with cameras and camping gear with the purpose of setting up camp high up on Table Mountain so as to get a clear view over the city. The hike is extremely challenging at night, especially with a 15kg backpack on your back! We reached our campsite at about 11pm, and then started setting up our cameras for the low clouds predicted to move into the city at about 3am the next morning. For the next 2 hours or so we scouted for the best locations and compositions, and then tried to get a few hours of sleep in before the clouds arrived.
At about 3am I was woken up by fellow photographer Brendon Wainwright. I realised that he had been up all night shooting timelapses, and getting pretty impressive astro shots even though we were in the middle of the city. I noticed that the clouds had rolled in a bit earlier than predicted and had created a thick blanket over the city, which was acting as a natural light pollution filter.
I looked up at the skies and for the first time in my life I was able to see the core of the Milky Way in the middle of the city! This is when everything changed, the mission immediately became an astrophotography mission, as these kind of conditions are extremely rare in the city.
Composition
After shooting the city and clouds for a while, I turned my focus to the Milky Way. I knew I was only going to have this one opportunity to capture an arching Milky Way over a city covered with clouds, so I had to work fast to get the perfect composition before the clouds changed or faded away.
I set my tripod on top of a large rock that gave me a bit of extra height so that I could get as much of the city lights in the shot as possible. The idea I had in my mind was to shoot a panorama from the center of the city to the Twelve Apostles Mountains in the southwest. This was a pretty large area to cover, plus the Milky Way was pretty much straight above us which meant I had to shoot a massive field of view in order to get both the city and the Milky Way.
The final hurdle was to get myself into the shot, which meant that I had to stand on a 200m high sheer cliff edge! Luckily this was only necessary for one frame in the entire panorama.
Gear and settings
I usually shoot with a Canon 70D with an 18mm f/3.5 lens and a Hahnel Triad 40Lite tripod. This particular night I forgot to bring a spare battery for my Canon and by the time I wanted to shoot this photo, my one battery had already died!
Luckily I had a backup camera with me, an Olympus OMD EM10 mirrorless camera. I had no choice but to use this camera for the shot. The lens on that camera was an Olympus M.Zuiko 14-42mm f/3.5 kit lens, which was not ideal, but I just had to make it work.
I think this photo is a testament to the fact that your gear is not nearly as important as your technique and knowledge of your surroundings and your camera.
I started off by shooting the first horizontal line of photos, in landscape orientation, to form the bottom edge of the final stitched photo. From there I ended up shooting 6 rows of 7 photos each in order to capture the whole view I wanted. This gave me 42 photos in total.
For the most part, my settings were 25 seconds, f/3.5, ISO 2000, with the ISO dropped on a few of the pictures where the city light was too bright. I shot all the photos in raw as to get as much data out of each frame as possible.
Editing
Astrophotography is all about the editing techniques.
In this scenario I had to stitch 42 photos into one photo. Normally I would just use the built-in function in Lightroom, but in this case I had to use software called PTGui Pro, which is made for stitching difficult panoramas. This software enables me to choose control points on the overlapping images in order to line up the photos perfectly.
After creating the panorama in PTGui Pro, I exported it as a TIFF file and then imported that file into Lightroom again. Keep in mind that this one file is now 3GB as it is made up of 42 RAW files!
In Lightroom I went through my normal workflow to bring out the detail in the Milky Way by boosting the highlights a bit, adding contrast, a bit of clarity, and bringing out some shadows in the landscape. The most difficult part was to clear up the distortion that was caused by the faint clouds in the sky between individual images. Unfortunately it is almost impossible to blend so many images together perfectly when you have faint clouds in the sky that form and disappear within minutes, but I think I did the best job I could to even out the bad areas.
A special event
After the final touches were made and the photo was complete, I realized that I had captured something really unique. It’s not every day that you see low clouds hanging over the city, and you almost never see the Milky Way so bright above the city, and I managed to capture both in one image!
The response to the image after posting it to my Instagram account was extremely overwhelming. I got people from all over the world wanting to purchase the image and it got shared hundreds of time across all social media.
It just shows you that planning and dedication does pay off!
What do you get when you combine 15 radio telescopes on Earth and one in space? You get an enormous “virtual telescope” that is 63,000 miles across. And when you point it at a distant black hole, you get the highest resolution image every seen in astronomy.
Although it looks just like a big green blob, it’s actually an enormously energetic jet of matter streaming out of a black hole. And this black hole is 900 million light years away.
As reported at Popular Science, it required an array of 15 radio telescopes on Earth, and the Russian space telescope Spektr-R, to capture the image. This technique—called interferometry—is like creating a telescope that is 63,000 miles across. The detail it provides is like seeing a 50 cent coin on the Moon.
For perspective, the object in the image is 186 billion miles long, at minimum, and would just barely fit in the Oort Cloud.
Have you seen the views in the morning skies this week, with three planets huddling together at dawn? Just one degree separated planets Jupiter and Venus, with Mars sneaking in nearby. Astrophotographers were out in full force to capture the scene!
Above, the very talented photographer Alan Dyer from Canada captured a stunning image of the planetary trio over Lake Annette, in Jasper National Park, Alberta, Canada. He took several gorgeous shots, and so we’ve added one more of his below, plus dozens of other wonderful shots from our astrophotographer friends around the world. Each of these images are from Universe Today’s Flickr pool, so you can click on each picture to get a larger view on Flickr.
Enjoy these great views, as there won’t be a more compact arrangement of three planets again until January 10, 2021.
Here’s a timelapse from Damien Weatherley of his planet imaging session from the morning of October 25, 2015:
And here’s just a reminder that this planetary conjunction has been setting up for a while. Here’s a shot from October 10 of the planets as they started moving closer together:
Clouds and moonlight are usually the bane of astronomers and astrophotographers. But on a recent evening at Mount Shasta in northern California, the two combined for a stunning look at usual cloud formations called lenticular clouds.
Fortunately for us, photographer Brad Goldpaint from Goldpaint Photography was on hand to capture the event. His beautiful sunset and moonlit images show these strange UFO-reminscent clouds, and the timelapse video he created provides a great demonstration of just how they form.
See the video and more images below:
A few ingredients are needed for lenticular clouds to form: mountains, stable but moist air, and just the right temperature and dew point.
According to WeatherUnderground, these smoooth, lens-shaped clouds normally develop on the downwind side of a mountain or mountain range when the stable, moist air flows over the obstruction and a series of large oscillating waves waves may form. If the temperature at the crest of the wave drops to the dew point, moisture in the air may condense to form lens-like or lenticular clouds. Since the air is stable, the oval clouds can grow quite large appear to be hovering in one place. Hence, the UFO appearance.
In the video, even though the clouds appear to be moving fast, it is a timelapse, so it shows the cloud movement over the entire night, condensed down to 30 seconds. But the video does allow us to see the fluid dynamics or laminar flows in parallel layers that creates the lenticular clouds. Plus, the stars and moonlight add to the beauty of the scene.