Spectacular Launch of Most Powerful Atlas Completes Constellation of Navy’s Advanced Tactical Comsats – Gallery

A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5 mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016. Credit: United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5  mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT.  Credit:  United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5 mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016. Credit: United Launch Alliance

Today’s (June 24) spectacular launch of the most powerful version of the venerable Atlas V rocket from the sunshine state completes the orbital deployment of a constellation of advanced tactical communications satellites for the U.S. Navy.

A United Launch Alliance (ULA) Atlas V rocket successfully launched the massive MUOS-5 satellite into clear blue skies from Space Launch Complex-41 on Cape Canaveral Air Force Station, Florida, at 10:30 a.m. EDT – on its way to a geosynchronous orbit location approximately 22,000 miles (37,586 km) above the Earth.

Note: Check back again for an expanding gallery of launch photos and videos

The Mobile User Objective System-5 (MUOS-5) satellite is the last in a five-satellite constellation that will provide military forces with significantly improved and assured communications worldwide. Lockheed Martin is the prime contractor for the MUOS system.

As launch time neared the weather odds improved to 100% GO and Atlas rumbled off the pad for on time launch that took place at the opening of a 44 minute window.

The launch was broadcast live on a ULA webcast.

The 206 foot tall Atlas rocket roared to space on an expanding plume of smoke and crackling fire from the first stage liquid and solid fueled engines generating over 2.5 million pounds of liftoff thrust.

Their contribution complete, all 5 solid rocket motors were jettisoned with seconds about 2 minutes after liftoff as the liquid fueled first stage continued firing.

The spent first stage separated about 5 minutes after liftoff, as the Centaur second stage fires up for the first of three times over almost three hours to deliver the hefty payload to orbit.

Blastoff of United Launch Alliance (ULA) Atlas V rocket on MUOS-5  mission from Space Launch Complex-41 on June 24, 2016.  Credit: Lane Hermann
Blastoff of United Launch Alliance (ULA) Atlas V rocket on MUOS-5 mission from Space Launch Complex-41 on June 24, 2016. Credit: Lane Hermann

“We are honored to deliver the final satellite in the MUOS constellation for the U.S. Navy,” said Laura Maginnis, ULA vice president, Custom Services, in a statement.

“Congratulations to our navy, air force and Lockheed Martin mission partners on yet another successful launch that provides our warfighters with enhanced communications capabilities to safely and effectively conduct their missions around the globe.”

This is the fifth satellite in the MUOS series and will provide military users up to 16 times more communications capability over existing systems, including simultaneous voice, video and data, leveraging 3G mobile communications technology.

Long plume from MUOS-5 Atlas V Launch by United Launch Alliance from Space Launch Complex-41 on June 24, 2016.  Credit: Michael Seeley
Long plume from MUOS-5 Atlas V Launch by United Launch Alliance from Space Launch Complex-41 on June 24, 2016. Credit: Michael Seeley

With MUOS-5 in orbit the system’s constellation is completed.

MUOS-5 will serve as an on orbit spare. It provides the MUOS network with near-global coverage. Communications coverage for military forces now extends further toward the North and South poles than ever before, according to Lockheed Martin officials.

“Like its predecessors, the MUOS-5 satellite has two payloads to support both new Wideband Code Division Multiple Access (WCDMA) waveform capabilities, as well as the legacy Ultra High Frequency (UHF) satellite system. On orbit, MUOS-5 will augment the constellation as a WCDMA spare, while actively supporting the legacy UHF system, currently used by many mobile forces today.”

The prior MUOS-4 satellite was launched on Sept. 2, 2015 – as I reported here.

The 20 story tall Atlas V launched in its most powerful 551 configuration and performed flawlessly.

United Launch Alliance (ULA) Atlas V rocket carrying MUOS-5 military comsat streaks to orbit atop a vast exhaust plume after liftoff from Space Launch Complex-41 on June 24, 2016.  Credit: Jillian Laudick
United Launch Alliance (ULA) Atlas V rocket carrying MUOS-5 military comsat streaks to orbit atop a vast exhaust plume after liftoff from Space Launch Complex-41 on June 24, 2016. Credit: Jillian Laudick

The vehicle includes a 5-meter diameter payload fairing and five solid rocket boosters that augment the first stage. The Atlas booster for this mission was powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

And the rocket needed all that thrust because the huge MUOS-5 was among the heftiest payloads ever lofted by an Atlas V booster, weighing in at some 15,000 pounds.
The Centaur upper stage was fired a total of three times.

For this mission the payload fairing was outfitted with an upgraded and advanced acoustic system to beet shield the satellite from the intense vibrations during the launch sequence.

This Atlas launch had been delayed several months to rectify a shortfall in the first stage thrust that occurred during the prior mission launching the Orbital ATK OA-6 cargo freighter in March 2016 on a contract mission for NASA to resupply the International Space Station (ISS).

The launch comes just two weeks after blastoff of the ULA Delta IV Heavy, the worlds most powerful rocket, on a mission to deliver a top secret spy satellite to orbit – as I witnessed and reported on here.

“I am so proud of the team for all their hard work and commitment to 100 percent mission success,” Maginnis added.

“It is amazing to deliver our second national security payload from the Cape in just two weeks. I know this success is due to our amazing people who make the remarkable look routine.”

The 15,000 pound MUOS payload is a next-generation narrowband tactical satellite communications system designed to significantly improve ground communications for U.S. forces on the move.

Here’s a detailed mission profile video describing the launch events:

Video caption: Atlas V MUOS-5 Mission Profile launched on June 24, 2016 from Cape Canaveral Air force Station. Credit: ULA

The launch was supported by the 45th Space Wing.

“Today’s successful launch is the culmination of the 45th Space Wing, Space and Missile Systems Center, Navy and ULA’s close partnership and dedicated teamwork,” said Brig. Gen. Wayne Monteith, 45th Space Wing commander and mission Launch Decision Authority, in a statement.

“We continue our unwavering focus on mission success and guaranteeing assured access to space for our nation, while showcasing why the 45th Space Wing is the ‘World’s Premiere Gateway to Space.”

Watch this exciting launch highlights video reel from ULA – including deployment of MUOS-5!

The MUOS-5 launch marked the 63rd Atlas V mission since the vehicle’s inaugural launch in August 2002. To date seven flights have launched in the 551 configuration. These include all four prior MUOS missions as well as NASA’s New Horizons mission to Pluto and the Juno mission to Jupiter.

Watch my up close remote launch video from the pad with hurling rocks:

Video caption: The sounds and fury of a ULA Atlas V 551 rocket blast off carrying Lockheed Martin built MUOS-5 tactical communications satellite to geosynchronous orbit for US Navy on June 24, 2016 at 10:30 a.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from remote camera positioned at pad. Credit: Ken Kremer/kenkremer.com

Watch this compilation of dramatic launch videos from Jeff Seibert.

Video Caption: MUOS-5 launch compilation on ULA Atlas 5 rocket on 6/24/2016 from Pad 41 of CCAFS. Credit: Jeff Seibert

The Navy's fifth Mobile User Objective System (MUOS) is encapsulated inside an Atlas V five-meter diameter payload fairing.  Credit: ULA
The Navy’s fifth Mobile User Objective System (MUOS) is encapsulated inside an Atlas V five-meter diameter payload fairing. Credit: ULA

The next Atlas V launch is slated for July 28 with the NROL-61 mission for the National Reconnaissance Office (NRO).

Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com
Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

United Launch Alliance (ULA) Atlas V rocket poised for launch on MUOS-5  mission from Space Launch Complex-41 on June 24, 2016.  Credit: Lane Hermann
United Launch Alliance (ULA) Atlas V rocket poised for launch on MUOS-5 mission from Space Launch Complex-41 on June 24, 2016. Credit: Lane Hermann
Artist’s concept of a MUOS satellite in orbit. Credit: Lockheed Martin
Artist’s concept of a MUOS satellite in orbit. Credit: Lockheed Martin
MUOS-5 mission logo. Credit: ULA
MUOS-5 mission logo. Credit: ULA
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5  mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016.  Credit:  United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5 mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016. Credit: United Launch Alliance

NASA Invites Public to ‘Send Your Name to Mars’ on InSight – Next Red Planet Lander

Sign up to send your name to Mars on InSight, NASA’s next mission to Mars launching in March 2016. Credit: NASA

Sign up to send your name to Mars on InSight, NASA’s next mission to Mars launching in March 2016. Credit: NASA
Sign up link below – don’t delay![/caption]

Calling space fans worldwide: Now is your chance to participate in NASA’s human ‘Journey to Mars’ initiative and NASA’s next robotic mission to Mars – the InSight lander launching to the Red Planet next spring.

NASA invites you to ‘Send Your Name to Mars’ on a silicon microchip aboard the InSight probe slated for blastoff on March 4, 2016 from Vandenberg Air Force Base, California.

InSight’s science goal is totally unique – to “listen to the heart of Mars to find the beat of rocky planet formation.”

The public can submit their names for inclusion on a dime-sized microchip that will travel on a variety of spacecraft voyaging to destinations beyond low-Earth orbit, including Mars.

“Our next step in the journey to Mars is another fantastic mission to the surface,” said Jim Green, director of planetary science at NASA Headquarters in Washington.

“By participating in this opportunity to send your name aboard InSight to the Red Planet, you’re showing that you’re part of that journey and the future of space exploration.”

In just the first 24 hours over 67,000 Mars enthusiasts have already signed up!

But time is of the essence since the deadline to submit your name is soon: Sept. 8, 2015.

How can you sign up to fly on InSight? Is there a certificate?

NASA has made it easy to sign up.

To send your name to Mars aboard InSight, click on this weblink posted online by NASA:

http://go.usa.gov/3Aj3G

And you can also print out an elegant looking ‘Boarding Pass’ that looks like this:

Boarding Pass for NASA’s InSight Mission to Mars - launching from Vandenberg Air Force Base, California in March 2016.  Credit: NASA
Boarding Pass with frequent flyer miles for NASA’s InSight Mission to Mars – launching from Vandenberg Air Force Base, California in March 2016. Credit: NASA

Furthermore the ‘Boarding Pass’ also comes with a listing of your “frequent flier” points accumulated by your participation in NASA’s ‘fly-your-name opportunity’ that will span multiple missions and multiple decades beyond low Earth orbit.

InSight represents the second ‘fly-your-name opportunity’ in NASA’s journey to Mars program. The uncrewed Orion EFT-1 mission launched on Dec. 5, 2014 was the first chance for space fans to collect ‘Journey to Mars’ points by sending your names to space.

The ‘Send Your Name to Mars’ campaign for Orion EFT-1 was a huge success.

Over 1.38 million people flew on the silicon chip aboard the maiden flight of Orion, the NASA capsule that will eventually transport humans to the Red Planet in the 2030s.

Don’t dawdle. Because after InSight, you’ll have to wait about three years until late 2018 and the blastoff of the next Orion capsule on NASA’s Exploration Mission-1 (EM-1) for you next chance to accumulate “frequent flier” points on a ‘Journey to Mars’ mission.

Orion EM-1 will launch atop NASA’s mammoth Space Launch System (SLS) rocket, and NASA just conducted a key test firing on Aug. 13 of the first stage engines that will power the stack to on a mission to the Moon – detailed in my recent story here.

InSight, which stands for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is a stationary lander.

It will join NASA’s surface science exploration fleet currently comprising of the Curiosity and Opportunity missions which by contrast are mobile rovers.

InSight is the first mission to understand the interior structure of the Red Planet. Its purpose is to elucidate the nature of the Martian core, measure heat flow and sense for “Marsquakes.”

“It will place the first seismometer directly on the surface of Mars to measure Martian quakes and use seismic waves to learn about the planet’s interior. It also will deploy a self-hammering heat probe that will burrow deeper into the ground than any previous device on the Red Planet. These and other InSight investigations will improve our understanding about the formation and evolution of all rocky planets, including Earth,” says NASA.

NASA's InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars.  Credits: NASA/JPL-Caltech/Lockheed Martin
NASA’s InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars. Credits: NASA/JPL-Caltech/Lockheed Martin

The countdown clock is ticking relentlessly towards liftoff in less than seven months time in March 2016.

Insight promises to ‘science the sh**’ out of the heart of Mars!

It is funded by NASA’s Discovery Program as well as several European national space agency’s and countries. Germany and France are providing InSight’s two main science instruments; The HP3 heat probe and the SEIS seismometer through the Deutsches Zentrum für Luft- und Raumfahrt. or German Aerospace Center (DLR) and the Centre National d’Etudes Spatiales (CNES).

“Together, humans and robotics will pioneer Mars and the solar system,” says Green.

InSight Boarding pass
InSight Boarding pass

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Most Powerful Atlas V Delivers a Most Spectacular Nighttime Sky Show Launch for US Navy

Blastoff of ULA Atlas V rocket lofting MUOS-3 to orbit for the US Navy from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: Alan Walters/AmericaSpace

Blastoff of ULA Atlas V rocket lofting MUOS-3 to orbit for the US Navy from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: Alan Walters/AmericaSpace
See launch gallery below![/caption]

Launching on its milestone 200th mission, the most powerful version of the venerable Atlas-Centaur rocket put on a most spectacular nighttime sky show on Tuesday evening, (Jan. 20) that mesmerized spectators along the Florida Space Coast on a mission to deliver a powerful new next-generation communications satellite to orbit for the US Navy.

The United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite (MUOS-3) for the United States Navy successfully launched to geostationary orbit from Space Launch Complex-41 at 8:04 p.m. EST from Cape Canaveral Air Force Station, Florida on Jan. 20, 2015.

The MUOS-3 launch opened ULA’s planned 13 mission manifest for 2015 with a boisterous bang as the Atlas V booster thundered off the seaside space coast pad.

Streak shot of United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite to orbit for the United States Navy as it launched from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: John Studwell/AmericaSpace
Streak shot of United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite to orbit for the United States Navy as it launched from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: John Studwell/AmericaSpace

The MUOS constellation is a next-generation narrowband US Navy tactical satellite communications system designed to significantly improve ground communications to US forces on the move and around the globe.

“The ULA team is honored to deliver this critical mission into orbit for the U.S. Navy and U.S. Air Force with the support of our many mission partners,” said Jim Sponnick, ULA vice president, Atlas and Delta Programs.

This is the third satellite in the MUOS series and will provide military users 10 times more communications capability over existing systems, including simultaneous voice, video and data, leveraging 3G mobile communications technology. It was built by Lockheed Martin.

Launch of ULA  Atlas V rocket sending MUOS-3 satcom to orbit for the US Navy from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: Julian Leek
Launch of ULA Atlas V rocket sending MUOS-3 satcom to orbit for the US Navy from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: Julian Leek

The unmanned Atlas V expendable rocket launched in its mightiest configuration known as the Atlas V 551.

The 206 foot-tall rocket features a 5-meter diameter payload fairing, five Aerojet Rocketdyne first stage strap on solid rocket motors and a single engine Centaur upper stage powered by the Aerojet Rocketdyne RL10C-1 engine.

The first stage is powered by the Russian-built dual nozzle RD AMROSS RD-180 engine. Combined with the five solid rocket motors, the Atlas V first stage generates over 2.5 million pounds of liftoff thrust.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

And the rocket needed all that thrust because the huge MUOS-3 was the heftiest payload lofted by an Atlas V booster, weighing in at some 15,000 pounds.

“The MUOS-3 spacecraft is the heaviest payload to launch atop an Atlas V launch vehicle. The Atlas V generated more than two and half million pounds of thrust at liftoff to meet the demands of lifting this nearly 7.5-ton satellite,” noted Sponnick.

The Atlas V 551 rockets into the darkened Florida sky at 8:04 p.m. EST Tuesday, 20 January, to deliver MUOS-3 into orbit. Photo Credit: Mike Killian / AmericaSpace
The Atlas V 551 rockets into the darkened Florida sky at 8:04 p.m. EST Tuesday, 20 January, to deliver MUOS-3 into orbit. Photo Credit: Mike Killian / AmericaSpace

The first Atlas rocket was first launched some 52 years ago.

“Today’s launch was the 200th Atlas-Centaur launch – a very sincere congratulations to the many women and men responsible for the incredible success of the Centaur upper stage over the last 5 decades!”

Overall this was the 52nd Atlas V mission and the fifth in the Atlas V 551 configuration.

The Atlas V 551 version has previously launched two prominent NASA planetary science missions including the New Horizons mission in 2006 that is about to reach Pluto and the Juno orbiter in 2011 that will arrive at Jupiter in July 2016. It was also used to launch MUOS-1 and MUOS-2.

United Launch Alliance successful MUOS-3 mission tonight! 20 Jan 2015.  Photo Credit: Matthew Travis / Zero-G News
United Launch Alliance successful MUOS-3 mission tonight! 20 Jan 2015. Photo Credit: Matthew Travis / Zero-G News

ULA’s second launch in 2015 thunders aloft from the US West Coast with NASA’s Soil Moisture Active Passive mission (SMAP) next week.

SMAP is the first US Earth-observing satellite designed to collect global observations of surface soil moisture.

SMAP will blastoff from Space Launch Complex 2 at Vandenberg AFB at 9:20 a.m. EST (6:20 a.m. PST) on ULA’s Delta II rocket.

A United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite for the United States Navy launched from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite for the United States Navy launched from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: United Launch Alliance

In another major milestone coming soon, the Atlas V is right now being man rated since it was chosen to launch the Boeing CST-100 space taxi, which NASA selected as one of two new commercial crew vehicles to launch US astronauts to the ISS as soon as 2017.

A United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite for the United States Navy launched from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the third Mobile User Objective System satellite for the United States Navy launched from Space Launch Complex-41 at 8:04 p.m. EST on Jan. 20, 2015. Credit: United Launch Alliance

The next Atlas launch involves NASA’s Magnetospheric Multiscale Mission (MMS) to study Earth’s magnetic reconnection. It is scheduled for launch on an Atlas V 421 booster on March 12 from Cape Canaveral. See my up close visit with MMS and NASA Administrator Charles Bolden at NASA Goddard Space Flight Center detailed in my story – here.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Orbital Sciences Selects ULA’s Atlas V to Launch Next Cygnus Cargo Ship to Station

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

A United Launch Alliance Altas V 401 rocket like that shown here will launch the next Orbital Sciences Cygnus cargo ship to the space station in place of the Antares rocket. NASA’s Mars-bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
More photos added[/caption]

Following the catastrophic Oct. 28 failure of an Orbital Sciences Corporation Antares rocket on a critical resupply mission to the space station for NASA, the company is seeking to quickly make up the loss to NASA by announcing the selection of the venerable Atlas V rocket built by United Launch Alliance to launch Orbital’s next Cygnus cargo ship to the orbital science lab.

Orbital and ULA signed a contract to launch at least one, and up to two, Cygnus cargo missions to the International Space Station (ISS) under NASA’s Commercial Resupply Services (CRS) program.

The first Cygnus mission would liftoff sometime late in the fourth quarter of 2015 aboard an Atlas V 401 vehicle from Space Launch Complex 41 (SLC-41) at Cape Canaveral Air Force Station in Florida.

Given that ULA’s full launch manifest was fairly full for the next 18 months, Orbital is fortunate to have arranged one or two available launch slots so quickly in the wake of the Antares launch disaster.

“Orbital is pleased to partner with ULA for these important cargo missions to the International Space Station,” said Frank Culbertson, Orbital executive vice president and general manager of its Advanced Programs Group.

“ULA’s ability to integrate and launch missions on relatively short notice demonstrates ULA’s manifest flexibility and responsiveness to customer launch needs.”

Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Antares’ doomed descent to incendiary destruction after the first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

Orbital also stated that there will be “no cost increase to the space agency” by utilizing the Atlas V as an interim launcher.

If necessary, a second Cygnus would be launched by the Atlas V in 2016.

The 401 version of the Atlas uses a 4 meter diameter payload fairing, no solid rocket boosters strapped on to the first stage, and a single-engine Centaur upper stage.

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12 Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com

Orbital had been evaluating at least three different potential launch providers.

Observers speculated that in addition to ULA, the other possibilities included a SpaceX Falcon 9 or a rocket from the European Space Agency at the Guiana Space Center.

“We could not be more honored that Orbital selected ULA to launch its Cygnus spacecraft,” said Jim Sponnick, vice president, Atlas and Delta Programs.

“This mission was awarded in a highly competitive environment, and we look forward to continuing ULA’s long history of providing reliable, cost-effective launch services for customers.”

The Orbital-3, or Orb-3, mission that ended in disaster on Oct. 28 was to be the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

The highly anticipated launch of the Antares rocket on Oct 28 suddenly went awry when one of the Soviet-era first stage engines unexpectedly exploded and cascaded into a spectacular aerial fireball just above the launch pad at NASA’s Wallops Flight Facility on the Orb-3 mission to the ISS.

Read my earlier eyewitness accounts at Universe Today.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Orbital was awarded a $1.9 Billion contract with NASA under the CRS program to deliver 20,000 kilograms of research experiments, crew provisions, spare parts, and hardware for the eight ISS flights.

In choosing the Atlas V with a greater lift capacity compared to Antares, Orbital will also be able to significantly increase the cargo mass loaded inside the Cygnus by about 35%.

This may allow Orbital to meet its overall space station payload obligation to NASA in 7 total flights vs. the originally planned 8.

The venerable Atlas V rocket is one of the most reliable and well built rockets in the world.

NASA’s Mars bound MAVEN spacecraft atop Atlas V booster rolls out to Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 16, 2013. Credit: Ken Kremer/kenkremer.com
The next Orbital Sciences Cygnus cargo ship to the space station will launch inside a 4m diameter payload firing, as shown here, on a United Launch Alliance Altas V 401 rocket used for NASA’s MAVEN. NASA’s Mars-bound MAVEN spacecraft atop Atlas V booster rolls out to Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 16, 2013. Credit: Ken Kremer/kenkremer.com

Indeed the Atlas V has been entrusted to launch many high value missions for NASA and the Defense Department – such as MAVEN, Curiosity, JUNO, TDRSS, and the X-37 B.

MAVEN launched on a similar 401 configuration being planned for Cygnus.

The two-stage Atlas rocket is also being man-rated right now to launch humans to low Earth orbit in the near future.

Orbital is still in the process of deciding on a new first stage propulsion system for Antares’ return to flight planned for perhaps sometime in 2016.

Watch here for Ken’s ongoing reporting about Antares and NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Soviet era NK-33 engines refurbished as the AJ26 exactly like pictured here probably caused Antares’ rocket failure on Oct. 28, 2014. Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

Completely Clandestine CLIO Climbs through Clouds to Orbit on Mystery Mission

United Launch Alliance (ULA) Atlas V rocket carrying the CLIO mission for Lockheed Martin Space Systems Company launched at 8:10 p.m. EDT September 16, 2014 from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer - kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – On a gloomy night and delayed by rain showers and thick threatening clouds to the very last moment of a two and a half launch window, the completely clandestine satellite known only as CLIO climbed slowly from a Cape Canaveral launch pad atop the thunderous flames of an Atlas V rocket on Tuesday evening on a mysterious mission to orbit.

Under a veil of secrecy for an unknown US government customer, the clouds cleared just enough to finally launch CLIO on a United Launch Alliance (ULA) Atlas V booster at 8:10 p.m. EDT September 16, 2014 from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fla.

A series of ugly thunderstorms with a deluge of rain shows repeatedly passed by the launch pad forcing a weather related delay from the initial daylight launch time of 5:44 p.m.

The 19 story rocket is protected by a quartet of lighting masts ringing the launch pad. And they did their job last night.

Mysterious CLIO payload shrouded beneath 4-meter-diameter payload fairing in this up close view of the top of the United Launch Alliance (ULA) Atlas V rocket prior to launch from Space Launch Complex-41 on  Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer - kenkremer.com
Mysterious CLIO payload shrouded beneath 4-meter-diameter payload fairing in this up close view of the top of the United Launch Alliance (ULA) Atlas V rocket prior to launch from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer – kenkremer.com

It was touch and go with the weather at the Cape all evening. None of us knew what would happen with the satellite we know nothing about. So the weather induced hazy view of the pad fit perfectly with the mystery missions hazy motif.

Normally, even the highly secretive US National Reconnaissance Office (NRO) claims ownership of their satellites named with what seems to be a random numbering scheme.

But not for CLIO. The only publicly released information is that CLIO was built by Lockheed Martin and derived from their commercial A2100 series satellite bus used for commercial telecommunications satellites among others.

“It is an honor to work with Lockheed Martin Space Systems Company and all of our mission partners to launch this very important satellite,” said Jim Sponnick, ULA vice president, Atlas and Delta Programs, in a statement.

United Launch Alliance (ULA) Atlas V rocket carrying the CLIO mission for Lockheed Martin Space Systems Company launched at 8:10 p.m. EDT September 16, 2014 from Space Launch Complex-41 on  Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer - kenkremer.com
United Launch Alliance (ULA) Atlas V rocket carrying the CLIO mission for Lockheed Martin Space Systems Company launched at 8:10 p.m. EDT September 16, 2014 from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer – kenkremer.com

“Today’s launch marks ULA’s 11th successful mission this year and the 88th successful mission since ULA was formed in December 2006, a true testament to the team’s focus on mission success, one launch at a time.”

Myself and other media were allowed to visit the launch pad and photograph the rocket up close with the CLIO insignia emblazoned on the payload fairing, shrouding the mysterious satellite beneath.

But even the CLIO insignia is completely nondescript, unlike the rather artistic NRO logos with cool imaginary creatures and a number like NR0-66 for example.

We do know the type of rocket utilized is an Atlas V 401 configuration vehicle, which includes a 4-meter-diameter payload fairing and no solid rocket motors.

Mysterious CLIO and Atlas V rocket prior to launch from Space Launch Complex-41 on  Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer - kenkremer.com
Mysterious CLIO and Atlas V rocket prior to launch from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer – kenkremer.com

We do know that the Atlas booster for this mission was powered by a Russian made RD AMROSS RD-180 engine as is customary. The Centaur upper stage was powered by a single Aerojet Rocketdyne RL10A engine, according to ULA.

We do know the launch was successful and certainly a spectacular sight for myself and all the spectators.

Nightfall over CLIO and Atlas V rocket at Space Launch Complex-41 prior to weather delayed Sept. 16, 2014 launch from  Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer - kenkremer.com
Nightfall over CLIO and Atlas V rocket at Space Launch Complex-41 prior to weather delayed Sept. 16, 2014 launch from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer – kenkremer.com

CLIO is presumably somewhere in Earth orbit, circling overhead secretly at unknown altitude(s) and inclination(s).

CLIO marks ULA’s 60th successful mission from Cape Canaveral, the 11th successful mission this year and the 88th successful mission since the company’s formation in 2006.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Extended time exposure partial streak shot of CLIO launch on  September 16, 2014 from Space Launch Complex-41 on  Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer - kenkremer.com
Extended time exposure partial streak shot of CLIO launch on September 16, 2014 from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer – kenkremer.com
Photographers including Ken Kremer/Universe Today set up cameras to capture up close imagery of Sept. 16, 2014 launch of mysterious CLIO satellite and Atlas V rocket at Space Launch Complex-41 on  Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer - kenkremer.com
Photographers including Ken Kremer/Universe Today set up cameras to capture up close imagery of Sept. 16, 2014 launch of mysterious CLIO satellite and Atlas V rocket at Space Launch Complex-41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer – kenkremer.com

Assembling and Launching Boeing’s CST-100 Private Space Taxi – One on One Interview with Chris Ferguson, Last Shuttle Commander; Part 2

Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing

Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing
Story updated[/caption]

KENNEDY SPACE CENTER, FL – Boeing expects to begin “assembly operations of our commercial CST-100 manned capsule soon at the Kennedy Space Center,” Chris Ferguson, commander of NASA’s final shuttle flight and now director of Boeing’s Crew and Mission Operations told Universe Today in an exclusive one-on-one interview about Boeing’s space efforts. In part 1, Ferguson described the maiden orbital test flights to the ISS set for 2017 – here.

In part 2, we focus our discussion on Boeings’ strategy for building and launching the CST-100 ‘space taxi’ as a truly commercial space endeavor.

To begin I asked; Where will Boeing build the CST-100?

“The CST-100 will be manufactured at the Kennedy Space Center (KSC) in Florida inside a former shuttle hanger known as Orbiter Processing Facility 3, or OPF-3, which is now [transformed into] a Boeing processing facility,” Ferguson told me. “Over 300 people will be employed.”

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017.  Ferguson is now  Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding.  Credit: NASA/Boeing
Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

During the shuttle era, all three of NASA’s Orbiter Processing Facilities (OPFs) were a constant beehive of activity for thousands of shuttle workers busily refurbishing the majestic orbiters for their next missions to space. But following Ferguson’s final flight on the STS-135 mission to the ISS in 2011, NASA sought new uses for the now dormant facilities.

So Boeing signed a lease for OPF-3 with Space Florida, a state agency that spent some $20 million modernizing the approximately 64,000 square foot hanger for manufacturing by ripping out all the no longer needed shuttle era scaffolding, hardware and equipment previously used to process the orbiters between orbital missions.

Boeing takes over the OPF-3 lease in late June 2014 following an official handover ceremony from Space Florida. Assembly begins soon thereafter.

When will CST-100 spacecraft manufacturing begin?

“The pieces are coming one by one from all over the country,” Ferguson explained. “Parts from our vendors are already starting to show up for our test article.

“Assembly of the test article in Florida starts soon.”

The CST-100 is being designed at Boeing’s Houston Product Support Center in Texas.

It is a reusable capsule comprised of a crew and service module that can carry a mix of cargo and up to seven crew members to the International Space Station (ISS) and must meet stringent safety and reliability standards.

How will the pressure vessel be manufactured? Will it involve friction stir welding as is the case for NASA’s Orion deep space manned capsule?

“There are no welds,” he informed.

“The pressure vessel is coming from Spincraft, an aerospace manufacturing company in Massachusetts.”

Spincraft has extensive space vehicle experience building tanks and assorted critical components for the shuttle and other rockets.

“The capsule is produced by Spincraft using a weld-free process. It’s made as a single piece by a proprietary spun form process and machined out from a big piece of metal.”

The capsule measures approximately 4.56 meters (175 inches) in diameter.

“The service module will be fabricated in Florida.”

The combined crew and service modules are about 5.03 meters (16.5 feet) in length.

“In two years in 2016, our CST-100 will look like the Orion EFT-1 capsule does now at KSC, nearly complete [and ready for the maiden test flight]. Orion is really coming along,” Ferguson beamed while contemplating a bright future for US manned spaceflight.

He is saddened that it’s been over 1000 days since his crew’s landing inside shuttle Atlantis in July 2011.

Early version of Boeing CST-100 pressure vessel mockup inside OPF-3 and surrounded by shuttle era scaffolding at the Kennedy Space Center, FL.   Credit: Ken Kremer – kenkremer.com
Early version of Boeing CST-100 pressure vessel mockup inside OPF-3 and surrounded by shuttle era scaffolding at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

With Boeing’s long history in aircraft and aerospace manufacturing, the CST-100 is being designed and built as a truly commercial endeavor.

Therefore the spacecraft team is able to reach across Boeing’s different divisions and diverse engineering spectrum and draw on a vast wealth of in-house expertise, potentially giving them a leg up on commercial crew competitors like SpaceX and Sierra Nevada Corp.

Nevertheless, designing and building a completely new manned spaceship is a daunting task for anyone. And no country or company has done it in decades.

How hard has this effort been to create the CST-100? – And do it with very slim funding from NASA and Boeing.

“Well any preconceived notion I had on building a human rated spacecraft has been completely erased. This is really hard work to build a human rated spacecraft!” Ferguson emphasized.

“And the budget is very small – without a lucrative government contract as used in the past to build these kind of spacecraft.”

“Our budget now is an order of magnitude less than to build the shuttle – which was about $35 to $42 Billion in 2011 dollars. The budget is a lot less now.”

Read more about the travails of NASA’s commercial crew funding situation in Part 1.

The team size now is just a fraction of what it was for past US crewed spaceships.

“So to support this we have a pretty small team.”

“The CST-100 team of a couple hundred folks works very hard!”

“For comparison, the space shuttle had 30,000 people working on it at the peak. By early 2011 there were 11,000. We flew on STS-135 with only 4,000 people in July 2011.”

NASA’s final shuttle crew on STS-135 mission greets the media and shuttle workers during Atlantis rollover from the OPF-1 processing hanger to the VAB at KSC during May 2011.   From left: Rex Walheim, Shuttle Commander Christopher Ferguson, Douglas Hurley and Sandra Magnus. The all veteran crew delivered the Raffaello multipurpose logistics module (MPLM), science supplies, provisions and space parts to the International Space Station (ISS). Credit: Ken Kremer - kenkremer.com
NASA’s final shuttle crew on STS-135 mission greets the media and shuttle workers during Atlantis rollover from the OPF-1 processing hanger to the VAB at KSC during May 2011. From left: Rex Walheim, Shuttle Commander Christopher Ferguson, Douglas Hurley and Sandra Magnus. The all veteran crew delivered the Raffaello multipurpose logistics module (MPLM), science supplies, provisions and space parts to the International Space Station (ISS).
Credit: Ken Kremer – kenkremer.com

Boeing’s design philosophy is straightforward; “It’s a simple ride up to and back from space,” Ferguson emphasized to me.

Next we turned to the venerable Atlas V rocket that will launch Boeing’s proposed space taxi. But before it can launch people it must first be human rated, certified as safe and outfitted with an Emergency Detection System (EDS) to save astronauts lives in a split second in case of a sudden and catastrophic in-flight anomaly.

The CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing
The CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing

United Launch Alliance (ULA) builds the two stage Atlas V and is responsible for human rating the vehicle which has a virtually unblemished launch record of boosting a wide array of advanced US military satellites and NASA’s precious one-of-a-kind robotic science explorers like Curiosity, JUNO, MAVEN and MMS on far flung interplanetary voyages of discovery.

What modifications are required to man rate the Atlas V to launch humans on Boeing’s CST-100?

“We will launch on an Atlas V that’s being retrofitted to meet NASA’s NPR human rating standards for redundancy and the required levels of fault tolerance,” Ferguson explained.

“So the rocket will have all the safety NASA wants when it flies humans.”

“Now with the CST-100 you can do all that in a smaller package [compared to shuttle].”

“The Atlas V will also be modified by ULA to include an Emergency Detection System (EDS). It’s a system not unlike what Apollo and Gemini had, which was much more rudimentary but quite evolved for its day.”

“Their EDS would monitor critical parameters like pitch, roll, yaw rates, critical engine parameters. It measures the time to criticality. You know the time to criticality for certain failures is so short that they didn’t think humans could react to it in time. So it was essentially automated.”

“So if it [EDS] sensed large pitch or yaw excursions, it would self jettison. And the escape system would kick in automatically.”

The Atlas V is already highly reliable. The EDS is one of the few systems that had to be added for human flights?

“Yes.”

“We also wanted a better abort system performance to go with the two engine Centaur upper stage we elected to use instead of the single engine Centaur.”

The purpose is to shut down the Centaur engine firing [in an emergency].”

“The two engine Centaur has flown many times. But it has never flown on an Atlas V. So there is a little bit of recertification and qualification to be done by ULA to go along with that also.”

Does that require a lot of work?

“ULA doesn’t seem to think the work to be done is all that significant. There is some work to be done.”

So it’s not a showstopper. Can ULA meet your 2017 launch schedule?

“Yes.”

“Before an engine fails it vibrates. So when you talk about automated ‘Red Lines’ you have to be careful that first you “Do No Harm” – and not make the situation even worse.”

“So we’ll see how ULA does building this,” Ferguson stated.

Artist's concept shows Boeing's CST-100 spacecraft separating from the first stage of its launch vehicle, a United Launch Alliance Atlas V rocket, following liftoff from Cape Canaveral Air Force Station in Florida. Credit: Boeing
Artist’s concept shows Boeing’s CST-100 spacecraft separating from the first stage of its launch vehicle, a United Launch Alliance Atlas V rocket, following liftoff from Cape Canaveral Air Force Station in Florida. Credit: Boeing

The future of the CST-100 project hinges on whether NASA awards Boeing a contract to continue development and assembly work in the next round of funding (dubbed CCtCAP) from the agency’s Commercial Crew Program (CCP). The CCP seed money fosters development of a safe, reliable and new US commercial human spaceship to low Earth orbit as a public/private partnership.

NASA’s announcement of the CCP contract winners is expected around late summer 2014.

Based on my discussions with NASA officials, it seems likely that the agency could select at least two winners to move on – to spur competition and thereby innovation – from among the trio of American aerospace firms competing.

Besides Boeing’s CST-100, the SpaceX Dragon and Sierra Nevada Dream Chaser vehicles are also in the running for the contract to restore America’s capability to fly humans to Earth orbit and the International Space Station (ISS) by 2017.

In Part 3 we’ll discuss with Chris Ferguson the requirements for how many and who will fly aboard the CST-100 and much more. Be sure to read Part 1 here.

Early version of Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer – kenkremer.com
Early version of Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

………

Ken’s upcoming presentation: Mercy College, NY, May 19: “Curiosity and the Search for Life on Mars” and “NASA’s Future Crewed Spaceships.”

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Boeing CST-100 space taxi launch atop Atlas V booster will resemble this photo of NASA’s Mars bound MAVEN spacecraft launched by Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing
Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing
STS-135 Shuttle Commander Chris Ferguson (right) and Ken Kremer (Universe Today) meet at emergency M-113 Tank Practice during crew pre-launch events at the Kennedy Space Center in the weeks before Atlantis July 8, 2011 liftoff. Credit: Ken Kremer- kenkremer.com
STS-135 Shuttle Commander Chris Ferguson (right) and Ken Kremer (Universe Today) meet at emergency M-113 Tank Practice during crew pre-launch events at the Kennedy Space Center in the weeks before Atlantis July 8, 2011 liftoff. Credit: Ken Kremer- kenkremer.com

Moscow Delivers Double Whammy to US Space Efforts – Bans Rocket Engines for Military Use, Won’t Prolong ISS Work

United Launch Alliance Atlas V rocket – powered by Russian made RD-180 engines – and Super Secret NROL-67 intelligence gathering payload poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, in March 2014. Credit: Ken Kremer – kenkremer.com

United Launch Alliance Atlas V rocket – powered by Russian made RD-180 engines – and Super Secret NROL-67 intelligence gathering payload poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, in March 2014.
Credit: Ken Kremer – kenkremer.com
Story updated[/caption]

Moscow delivered a double whammy of bad news to a broad range of US space efforts today by banning the use of Russian made rocket engines for US military national security launches and by declining to prolong cooperation on the International Space Station (ISS) – says Russia’s deputy prime minister, Dmitry Rogozin, who is in charge of space and defense industries.

Rogozin was quoted in a story prominently featured today, May 13, on the English language website of Russia Today, a Russian TV news and cultural network.

“Moscow is banning Washington from using Russian-made rocket engines, which the US has used to deliver its military satellites into orbit,” said Rogozin according to the Russia Today report.

Virtually every aspect of the manned and unmanned US space program – including NASA, other government agencies, private aerospace company’s and crucial US national security payloads – are highly dependent on Russian & Ukrainian rocketry and are clearly at risk amidst the current Ukrainian crisis as tensions continue to escalate with deadly new clashes reported today in Ukraine – with global repercussions.

The engines at issue are the Russian made RD-180 engines – which power the first stage of the venerable Atlas V rocket built by United Launch Alliance (ULA) and are used to launch a wide array of US government satellites including top secret US military spy satellites for the US National Reconnaissance Office, like NROL-67, as well as science satellites for NASA like the Curiosity Mars rover and MAVEN Mars orbiter.

The dual nozzle RD-180 engines are manufactured in Russia by NPO Energomash. Rogozin’s statement effectively blocks their export to the US.

Russian Deputy Prime Minister Dmitry Rogozin. Credit: RIA Novosti
Russian Deputy Prime Minister Dmitry Rogozin. Credit: RIA Novosti

“We proceed from the fact that without guarantees that our engines are used for non-military spacecraft launches only, we won’t be able to supply them to the US,” Rogozin said.

So although the launch of NASA science missions might preliminarily appear to be exempt, they could still be at serious risk based on a qualifier from Rogozin, pertaining to RD-180 engines already delivered.

“If such guarantees aren’t provided the Russian side will also be unable to perform routine maintenance for the engines, which have been previously delivered to the US, he added.

A ULA spokesperson told me that the company has a two year supply of RD-180 engines already stockpiled in the US.

Rogozin’s statements today are clearly in retaliation to stiffened economic sanctions imposed by the US and Western nations in response to Russia’s actions in the ongoing crisis in Ukraine and the annexation of Crimea; as I reported earlier here, here and here.

Therefore, US National Security spy satellite and NASA science launches are left lingering with uncertainty and potential disarray.

Rogozin is specifically named on the US economic sanctions target list.

He was also named by SpaceX CEO Elon Musk in his firms attempt to block the importation of the RD-180 engines by ULA for the Atlas V as a violation of US sanctions.

Federal Judge Susan Braden initially imposed a temporary injunction blocking the RD-180 imports on April 30. She rescinded that order last Thursday, May 8, after receiving written communications clarifications from the US Justice and Commerce departments that the engine import did not violate the US government imposed sanctions.

Rogozin went on to say that “Moscow also isn’t planning to agree to the US offer of prolonging operation of the International Space Station (ISS) [to 2024].

“We currently project that we’ll require the ISS until 2020,” he said. “We need to understand how much profit we’re making by using the station, calculate all the expenses and depending on the results decide what to do next.”

“A completely new concept for further space exploration is currently being developed by the relevant Russian agencies”.

NASA announced early this year the agency’s intention to extend ISS operations to at least 2024, and is seeking agreement from all the ISS partners including Russia.

Since the shutdown of the Space Shuttle program in 2011 before a replacement crew vehicle was available, American astronauts are now 100% dependent on the Russian Soyuz capsule for rides to the ISS and back.

Congress has also repeatedly slashed NASA’s commercial crew program budget, forcing at least an 18 month delay in its start up and thus continued reliance on the Soyuz for years to come at over $70 million per seat.

NASA thus has NO immediate alternatives to Russia’s Soyuz – period.

The Atlas V is also planned as the launcher for two of the three companies vying for the next round of commercial crew contracts aimed at launching US astronauts to the ISS. The commercial crew contracts will be awarded by NASA later this year.

In a previous statement regarding the US sanctions against Russia, Rogozin said that sanctions could “boomerang” against the US space program and that perhaps NASA should “deliver their astronauts to the International Space Station using a trampoline.”

Curiosity rover launches to Mars atop Atlas V rocket on Nov. 26, 2011 from Cape Canaveral, Florida.  Credit: Ken Kremer
NASA’s Curiosity rover launches to Mars atop Atlas V rocket on Nov. 26, 2011 from Cape Canaveral, Florida. Atlas V 1st stage is powered by Russian made RD-180 engines.
Credit: Ken Kremer – kenkremer.com

Watch for Ken’s articles as the Ukraine crisis escalates with uncertain and potentially dire consequences for US National Security and NASA.

Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

………

Ken’s upcoming presentation: Mercy College, NY, May 19: “Curiosity and the Search for Life on Mars” and “NASA’s Future Crewed Spaceships.”

The International Space Station (ISS) in low Earth orbit.  Credit: NASA
The International Space Station (ISS) in low Earth orbit.
The sole way for every American and station partner astronaut to fly to space and the ISS is aboard the Russian Soyuz manned capsule since the retirement of NASA’s Space Shuttles in 2011. There are currently NO alternatives to Russia’s Soyuz. Credit: NASA

Super Secret Spy Satellite Soars Spectacularly to Space aboard Atlas V booster from Cape Canaveral – Launch Gallery

Blastoff of the Atlas V rocket with the super secret NROL-67 intelligence gathering payload on April 10, 2014 from Cape Canaveral Air Force Station, Fla. Credit: Alan Walters/AmericaSpace

Blastoff of the Atlas V rocket with the super secret NROL-67 intelligence gathering payload on April 10, 2014 from Cape Canaveral Air Force Station, Fla. Credit: Alan Walters/AmericaSpace
Launch gallery expanded and updated – with timelapse ![/caption]

A super secret US spy satellite soared spectacularly to space this afternoon from Cape Canaveral atop a very powerful version of the Atlas V rocket on a classified flight for the National Reconnaissance Office.

The United Launch Alliance (ULA) Atlas V carrying the NROL-67 intelligence gathering satellite on a US national security mission for the NRO lifted off from Space Launch Complex-41 ignited its engines precisely on the targeted time on April 10 at 1:45 p.m. EDT into brilliant blue Florida skies on Cape Canaveral Air Force Station.

This mighty version of the 191 ft (58 m) tall Atlas V whose thrust was augmented with four strap on solid rocket motors has only been used once before – to loft NASA’s Curiosity rover to the Red Planet back in November 2011.

Atlas V NROL-67 launch photographed by iPhone from Cocoa Beach on April 10, 2014 while swimming. Credit: Nicole Solomon
Atlas V NROL-67 launch photographed by iPhone from Cocoa Beach on April 10, 2014 while swimming with the Florida fish. Credit: Nicole Solomon

Today’s Atlas V launch, as well as another for SpaceX/NASA, was postponed over two weeks ago from March 25 & 30 amidst final launch preparations when an electrical short completely knocked out use of the US Air Force’s crucial tracking radar that is mandatory to insure public safety for all launches on the Eastern Range.

Atlas V/NROL-67 spy satellite soars off Launch Complex 41 at Cape Canaveral on April 10, 2014. Credit: Jeff Seibert/WiredforSpace
Atlas V/NROL-67 spy satellite soars off Launch Complex 41 at Cape Canaveral on April 10, 2014. Credit: Jeff Seibert/Wired4space.com

Nothing is publicly known about the NROL surveillance satellite, its capabilities, orbit or mission or goals.

Due to the covert nature of this mission, the flight entered the now standard total news blackout and the TV transmission ceased barely five minutes after liftoff.

The successful blastoff follows closely on the heels of another Atlas V launch just seven days ago.

On April 3, ULA launched a less powerful version of the Atlas V carrying an Air Force weather satellite from Vandenberg Air Force Base, Calif.

Blastoff of the Atlas V rocket with the super secret NROL-67 intelligence gathering payload on April 10, 2014 from Cape Canaveral Air Force Station, Fla.     Credit: Alan Walters/AmericaSpace
Blastoff of the Atlas V rocket with the super secret NROL-67 intelligence gathering payload on April 10, 2014 from Cape Canaveral Air Force Station, Fla. Credit: Alan Walters/AmericaSpace
Clear of the catenary lightning wires the Atlas 5-541 booster with its NROL-67 payload roar to orbit on April 10, 2014 from Cape Canaveral, FL. Credit: nasatech.net
Clear of the catenary lightning wires the Atlas 5-541 booster with its NROL-67 payload roar to orbit on April 10, 2014 from Cape Canaveral, FL. Credit: nasatech.net

“We are honored to deliver this national security asset to orbit together with our customers the NRO Office of Space Launch and the Air Force,” said Jim Sponnick, ULA vice president, Atlas and Delta Programs.

“Successfully launching two missions from two different coasts in just seven days is a testament to the team’s one-launch-at-a-time focus and ULA’s commitment to mission success and schedule reliability.”

Today’s liftoff involved use of the Atlas V in the 541 configuration. The NROL-67 payload was housed inside a 5-meter diameter payload fairing. And a total of four US built Aerojet Rocketdyne solid rocket motors were mounted on the first stage of the booster.

Atlas V/NROL-67 spy satellite soars off Launch Complex 41 at Cape Canaveral on April 10, 2014. Credit: Jeff Seibert/WiredforSpace
Atlas V/NROL-67 spy satellite soars off Launch Complex 41 at Cape Canaveral on April 10, 2014. Credit: Jeff Seibert/Wired4space.com

The Centaur upper stage which boosted NROL-67 to Earth orbit was powered by a single Aerojet Rocketdyne RL10A engine.

The Atlas V first stage was also powered by the dual nozzle RD AMROSS RD-180 engine manufactured in Russia.

Use of the Russian designed and built RD AMROSS RD-180 engine potentially puts Atlas V launches and US National Security launches at risk, if the crisis in Ukraine and Crimea spins out of control as I have reported previously.

“ULA maintains a two year stockpile of the RD-180 engines at all times,” ULA Jessica Rye spokesperson told me recently at Cape Canaveral Air Force Station.

The next ULA launch from the Cape is scheduled for May 15 when a Delta IV rocket will loft the GPS IIF-6 mission for the United States Air Force from Space Launch Complex-37.

Rising quickly from Pad 41 on its RD-180 and 4 SRBs, the Atlas 5-541 vehicle begins its mission to geosync orbit. Credit: nasatech.net
Rising quickly from Pad 41 on its RD-180 and 4 SRBs, the Atlas 5-541 vehicle begins its mission to geosync orbit. Credit: nasatech.net

A SpaceX Falcon 9 is slated to launch on Monday, April 14 at 4:58 p.m. EDT.

The Falcon 9 is lofting a SpaceX Dragon cargo ship and delivering some 5000 pounds of science experiments and supplies for the six man space station crew – under a resupply contract with NASA.

Also packed aboard the Dragon are a pair of legs for NASA’s experimental Robonaut 2 crew member.

Stay tuned here for Ken’s continuing Atlas V NROL 67, SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Learn more at Ken’s upcoming presentations at the NEAF astro/space convention, NY on April 12/13.

Ken Kremer

Startled Florida space coast sunbathers see sudden blastoff of Atlas V/NROl-67 from Cocoa Beach on April 10, 2014. Credit: Nicolle Solomon by iPhone
Startled Florida space coast sunbathers see sudden blastoff of Atlas V/NROl-67 from Cocoa Beach on April 10, 2014. Credit: Nicole Solomon by iPhone
Timelapse of Atlas V/NROL-67 blastoff on April 10, 2014. Credit: Chuck Higgins
Timelapse of Atlas V/NROL-67 blastoff on April 10, 2014. Credit: Chuck Higgins
April 10, 2014 blastoff of Atlas V rocket with super secret NROL-67 intelligence gathering payload from Cape Canaveral Air Force Station, Fla.     Credit: Ken Kremer/kenkremer.com
April 10, 2014 blastoff of Atlas V rocket with super secret NROL-67 intelligence gathering payload from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
Atlas V rocket and Super Secret NROL-67 intelligence gathering payload following rollout to Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, on March 24, 2014. Credit: Ken Kremer - kenkremer.com
Atlas V rocket and Super Secret NROL-67 intelligence gathering payload following rollout to Space Launch Complex 41 at Cape Canaveral Air Force Station, FL. The Atlas V launched on April 10, 2014. Credit: Ken Kremer – kenkremer.com

Gallery: Atlas 5 Launches US Navy’s Heavyweight MUOS-2 Satellite into Orbit

The launch of the Mobile User Objective System satellite (MUOS-2), a Navy communications satellite aboard a United Launch Alliance Atlas 5 rocket, on July 19, 2013. Credit and copyright: John O'Connor/Nasatech.com

A heavyweight next generation of military communications satellites was launched on July 19, 2013 from Cape Canaveral Air Force Station, in Florida. The Mobile User Objective System (MUOS)-2 satellite launched on board a United Launch Alliance Atlas 5 rocket, and is now in the process of reaching to its final geostationary orbit.

Images here are courtesy of John O’Connor from the Nasatech website.

The satellite weighed nearly 7,000 kg (15,000 pounds) making it one of the heaviest payloads ever launched with an Atlas 5.

See more launch images below:

The launch of the Mobile User Objective System satellite (MUOS-2), a Navy communications satellite aboard a United Launch Alliance Atlas 5 rocket, on July 19, 2013. Credit and copyright: John O'Connor/Nasatech.net
The launch of the Mobile User Objective System satellite (MUOS-2), a Navy communications satellite aboard a United Launch Alliance Atlas 5 rocket, on July 19, 2013. Credit and copyright: John O’Connor/Nasatech.net

It will take about eight days to maneuver MUOS-2 into geostationary orbit according to Captain Paul Ghyzel, the Navy’s MUOS program manager.

The US Navy says the new satellite is the second satellite in a new system that supports a worldwide, multi-Service population of users in the ultra-high frequency band. The system provides increased communications capabilities, and is designed to support users that require greater mobility, higher data rates and improved operational availability.

The MUOS-1 launched in February 2012 and there will be five such satellites in the system that are described as being like orbital cell phone towers to span the globe.

The network will cost a total of $5 billion.

The launch of the Mobile User Objective System satellite (MUOS-2), a Navy communications satellite aboard a United Launch Alliance Atlas 5 rocket, on July 19, 2013. Credit and copyright: John O'Connor/Nasatech.net
The launch of the Mobile User Objective System satellite (MUOS-2), a Navy communications satellite aboard a United Launch Alliance Atlas 5 rocket, on July 19, 2013. Credit and copyright: John O’Connor/Nasatech.net
Arcing out on an easterly course to geosync orbit the Atlas V/MUOS-2 vehicle accelerates. Credit and copyright: John O'Connor/Nasatech.net
Arcing out on an easterly course to geosync orbit the Atlas V/MUOS-2 vehicle accelerates. Credit and copyright: John O’Connor/Nasatech.net

See more MUOS-2 launch images from John at Nasatech.net.