Astronomers Report They’ve Detected the Amino Acid Glycine in the Atmosphere of Venus

The planet Venus, as imaged by the Magellan mission. Credit: NASA/JPL

Does it feel like all eyes are on Venus these days? The discovery of the potential biomarker phosphine in the planet’s upper atmosphere last month garnered a lot of attention, as it should. There’s still some uncertainty around what the phosphine discovery means, though.

Now a team of researchers claims they’ve discovered the amino acid glycine in Venus’ atmosphere.

Continue reading “Astronomers Report They’ve Detected the Amino Acid Glycine in the Atmosphere of Venus”

Did Pioneer See Phosphine in the Clouds of Venus Decades Ago?

Artist’s rendition of a theoretical balloon probe in Venus Clouds c. T.Balint ESA

The discovery of phosphine in Venus’ atmosphere has generated a lot of interest. It has the potential to be a biosignature, though since the discovery, some researchers have thrown cold water on that idea.

But it looks, at least, like the discovery is real, and that one of NASA’s Pioneer spacecraft detected the elusive gas back in 1978. And though it’s not necessarily a biosignature, the authors of a new study think that we need to rethink the chemistry of Venus’ atmosphere.

Continue reading “Did Pioneer See Phosphine in the Clouds of Venus Decades Ago?”

Maybe Volcanoes Could Explain the Phosphine in Venus’ Atmosphere

This artistic impression depicts Venus. Astronomers at MIT, Cardiff University, and elsewhere may have observed signs of life in the atmosphere of Venus. Credits:Image: ESO (European Space Organization)/M. Kornmesser & NASA/JPL/Caltech

The detection of phosphine in Venus’ atmosphere was one of those quintessential moments in space science. It was an unexpected discovery, and when combined with our incomplete understanding of planetary science, and our wistful hopefulness around the discovery of life, the result was a potent mix that lit up internet headlines.

As always, some of the headlines were a bit of an over-reach. But that’s the way it goes.

At the heart of it all, there is compelling science. And the same, overarching question that keeps popping up: Are we alone?

Continue reading “Maybe Volcanoes Could Explain the Phosphine in Venus’ Atmosphere”

Climate Change is Making the Atmosphere Worse for Astronomy

climate change and observatories
Global climate change's effects will reach right up the skies, affecting such places as the VLTI in Chile. Courtesy ESO.

Modern astronomical telescopes are extraordinarly powerful. And we keep making them more powerful. With telescopes like the Extremely Large Telescope and the Giant Magellan Telescope seeing first light in the coming years, our astronomical observing power will be greater than ever.

But a new commentary says that climate change could limit the power of our astronomical observatories.

Continue reading “Climate Change is Making the Atmosphere Worse for Astronomy”

Astronomers Continue to Analyze Pluto’s Atmosphere

This image of Pluto taken by the New Horizons spacecraft shows the blue color of Pluto's high-altitude haze. Image: NASA/New Horizons.
This image of Pluto taken by the New Horizons spacecraft shows the blue color of Pluto's high-altitude haze. Image: NASA/New Horizons.

When NASA’s New Horizons spacecraft flew past Pluto, studying the atmosphere was a key scientific objective. Most of what we know about the ice dwarf came from that flyby. That happened in July 2015, but it took over 15 months to send all the data home, and it’s taking even longer to analyze it.

Continue reading “Astronomers Continue to Analyze Pluto’s Atmosphere”

New Data Show How Phytoplankton Pumps Carbon Out of the Atmosphere at an Enormous Scale

One of the most fascinating things about planet Earth is the way that life shapes the Earth and the Earth shapes life. We only have to look back to the Great Oxygenation Event (GOE) of 2.4 billion years ago to see how lifeforms have shaped the Earth. In that event, phytoplanktons called cyanobacteria pumped the atmosphere with oxygen, extinguishing most life on Earth, and paving the way for the development of multicellular life.

Early Earth satisfied the initial conditions for life to appear, and now, lifeforms shape the atmosphere, the landscape, and the oceans in many different ways.

At the base of many of these changes is phytoplankton.

Continue reading “New Data Show How Phytoplankton Pumps Carbon Out of the Atmosphere at an Enormous Scale”

Astronomers Can Actually See the Clouds and Weather on Brown Dwarf 6.5 Light-Years Away

This artist's conception illustrates the brown dwarf named 2MASSJ22282889-431026, observed by NASA's Hubble and Spitzer space telescopes. Brown dwarfs are more massive and hotter than planets but lack the mass required to become stars. Image credit: NASA
This artist's conception illustrates the brown dwarf named 2MASSJ22282889-431026, observed by NASA's Hubble and Spitzer space telescopes. Brown dwarfs are more massive and hotter than planets but lack the mass required to become stars. Image credit: NASA

Brown dwarfs are in a tough spot. Not quite a star, not quite a planet, they occupy a place between gas giants and stars. They have more mass than gas giants like Jupiter, but not enough to ignite fusion and become a star.

But astronomers still study them. How could they resist?

Continue reading “Astronomers Can Actually See the Clouds and Weather on Brown Dwarf 6.5 Light-Years Away”

The Atmosphere On Venus Rotates Faster than the Planet, and Now Astronomers Think They Know Why

The planet Venus, as imaged by the Magellan mission. Credit: NASA/JPL

Venus is unique—almost—in our Solar System because it’s what’s known as a “super-rotator.” That means that Venus’ atmosphere rotates faster than the planet itself. Only Saturn’s moon Titan has the same characteristic.

Scientists have been trying to figure out what causes this super-rotation, and now an international team of researchers might have figured it out.

Continue reading “The Atmosphere On Venus Rotates Faster than the Planet, and Now Astronomers Think They Know Why”

Astronomers Measure the Wind Speed on a Brown Dwarf for the First Time. Spoiler: Insanely Fast

This artist's conception illustrates the brown dwarf named 2MASSJ22282889-431026, observed by NASA's Hubble and Spitzer space telescopes. Brown dwarfs are more massive and hotter than planets but lack the mass required to become stars. Image credit: NASA
This artist's conception illustrates the brown dwarf named 2MASSJ22282889-431026, observed by NASA's Hubble and Spitzer space telescopes. Brown dwarfs are more massive and hotter than planets but lack the mass required to become stars. Image credit: NASA

In some ways, brown dwarfs are nature’s stellar oddballs. A lot of stars exhibit strange behaviour at different times in their evolution. But brown dwarfs aren’t even certain that they’re stars at all.

But that doesn’t mean astronomers don’t want to study and understand them.

Continue reading “Astronomers Measure the Wind Speed on a Brown Dwarf for the First Time. Spoiler: Insanely Fast”

Clouds On Jupiter Rising Up Above the Surrounding Atmosphere

At center right, a patch of bright, high-altitude "pop-up" clouds rises above Jupiter's surrounding atmosphere. Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstadt

Though it looks like it to us, Jupiter’s clouds do no form a flat surface. Some of its clouds rise up above the surrounding cloud tops. The two bright spots in the right center of this image are much higher than the surrounding clouds.

Continue reading “Clouds On Jupiter Rising Up Above the Surrounding Atmosphere”