What is an Astronomical Unit?

Apsis
The Earth revolves around the Sun like this.

When it comes to dealing with the cosmos, we humans like to couch things in familiar terms. When examining exoplanets, we classify them based on their similarities to the planets in our own Solar System – i.e. terrestrial, gas giant, Earth-size, Jupiter-sized, Neptune-sized, etc. And when measuring astronomical distances, we do much the same.

For instance, one of the most commonly used means of measuring distances across space is known as an Astronomical Unit (AU). Based on the distance between the Earth and the Sun, this unit allows astronomers to characterize the vast distances between the Solar planets and the Sun, and between extra-solar planets and their stars.

Definition:

According to the current astronomical convention, a single Astronomical Unit is equivalent to 149,597,870.7 kilometers (or 92,955,807 miles). However, this is the average distance between the Earth and the Sun, as that distance is subject to variation during Earth’s orbital period. In other words, the distance between the Earth and the Sun varies in the course of a single year.

Earth’s orbit around the Sun, showing its average distance (or 1 AU). Credit: Huritisho/Wikipedia Commons

During the course of a year, the Earth goes from distance of 147,095,000 km (91,401,000 mi) from the Sun at perihelion (its closest point) to 152,100,000 km (94,500,000 mi) at aphelion (its farthest point) – or from a distance of 0.983 AUs to 1.016 AUs.

History of Development:

The earliest recorded example of astronomers estimating the distance between the Earth and the Sun dates back to Classical Antiquity. In the 3rd century BCE work, On the Sizes and Distances of the Sun and Moon – which is attributed to Greek mathematician Aristarchus of Samos – the distance was estimated to be between 18 and 20 times the distance between the Earth and the Moon.

However, his contemporary Archimedes, in his 3rd century BCE work Sandreckoner, also claimed that Aristarchus of Samos placed the distance of 10,000 times the Earth’s radius. Depending on the values for either set of estimates, Aristarchus was off by a factor of about 2 (in the case of Earth’s radius) to 20 (the distance between the Earth and the Moon).

The oldest Chinese mathematical text – the 1st century BCE treatise known as Zhoubi Suanjing – also contains an estimate of the distance between the Earth and Sun. According to the anonymous treatise, the distance could be calculated by conducting geometric measurements of the length of noontime shadows created by objects spaced at specific distances. However, the calculations were based on the idea that the Earth was flat.

Illustration of the Ptolemaic geocentric conception of the Universe, by Bartolomeu Velho (?-1568), from his work Cosmographia, made in France, 1568. Credit: Bibilotèque nationale de France, Paris

Famed 2nd century CE mathematician and astronomer Ptolemy relied on trigonometric calculations to come up with a distance estimate that was equivalent to 1210 times the radius of the Earth. Using records of lunar eclipses, he estimated the Moon’s apparent diameter, as well as the apparent diameter of the shadow cone of Earth traversed by the Moon during a lunar eclipse.

Using the Moon’s parallax, he also calculated the apparent sizes of the Sun and the Moon and concluded that the diameter of the Sun was equal to the diameter of the Moon when the latter was at it’s greatest distance from Earth. From this, Ptolemy arrived at a ratio of solar to lunar distance of approximately 19 to 1, the same figure derived by Aristarchus.

For the next thousand years, Ptolemy’s estimates of the Earth-Sun distance (much like most of his astronomical teachings) would remain canon among Medieval European and Islamic astronomers. It was not until the 17th century that astronomers began to reconsider and revise his calculations.

This was made possible thanks to the invention of the telescope, as well as Kepler’s Three Laws of Planetary Motion, which helped astronomers calculate the relative distances between the planets and the Sun with greater accuracy. By measuring the distance between Earth and the other Solar planets, astronomers were able to conduct parallax measurements to obtain more accurate values.

With parallax technique, astronomers observe object at opposite ends of Earth’s orbit around the Sun to precisely measure its distance. Credit: Alexandra Angelich, NRAO/AUI/NSF.

By the 19th century, determinations of about the speed of light and the constant of the aberration of light resulted in the first direct measurement of the Earth-Sun distance in kilometers.  By 1903, the term “astronomical unit” came to be used for the first time. And throughout the 20th century, measurements became increasingly precise and sophisticated, thanks in part to accurate observations of the effects of Einstein’s Theory of Relativity.

Modern Usage:

By the 1960s, the development of direct radar measurements, telemetry, and the exploration of the Solar System with space probes led to precise measurements of the positions of the inner planets and other objects. In 1976, the International Astronomical Union (IAU) adopted a new definition during their 16th General Assembly. As part of their System of Astronomical Constants, the new definition stated:

“The astronomical unit of length is that length (A) for which the Gaussian gravitational constant (k) takes the value 0.01720209895 when the units of measurement are the astronomical units of length, mass and time. The dimensions of k² are those of the constant of gravitation (G), i.e., L³M-1T2. The term “unit distance” is also used for the length A.”

In response to the development of hyper-precise measurements, the International Committee for Weights and Measures (CIPM) decided to modify the the International System of Units (SI) in 1983. Consistent with this, they redefined the meter to be measured in terms of the speed of light in vacuum.

Infographic comparing the orbit of the planet around Proxima Centauri (Proxima b) with the same region of the Solar System. Credit: ESO

However, by 2012, the IAU determined that the equalization of relativity made the measurement of AUs too complex, and redefined the astronomical unit in terms of meters. In accordance with this, a single AU is equal to 149597870.7 km exactly (92.955807 million miles), 499 light-seconds, 4.8481368×10-6 of a parsec, or 15.812507×10-6 of a light-year.

Today, the AU is used commonly to measure distances and create numerical models for the Solar System. It is also used when measuring extra-solar systems, calculating the extent of protoplanetary clouds or the distance between extra-solar planets and their parent star. When measuring interstellar distances, AUs are too small to offer convenient measurements. As such, other units – such as the parsec and the light year – are relied upon.

The Universe is a huge place, and measuring even our small corner of it producing some staggering results. But as always, we prefer to express them in ways that are as relatable and familiar.

We’ve written many interesting articles about distances in the Solar System here at Universe Today. Here’s How Far are the Planets from the Sun?, How Far is Mercury from the Sun?, How Far is Venus from the Sun?, How Far is Earth from the Sun?, How Far is Mars from the Sun?, How Far is Jupiter from the Sun?, How Far is Saturn from the Sun?, How Far is Uranus from the Sun?, How Far is Neptune from the Sun?, How Far is Pluto from the Sun?

If you’d like more information about the Earth’s orbit, check out NASA’s Solar System Exploration page.

We’ve also recorded an episode of Astronomy Cast dedicated to the measurement of distances in astronomy. Listen here, Episode 10: Measuring Distance in the Universe.

Sources:

1 AU in KM

Earth from space

[/caption]
1 AU in KM = 149,598,000 kilometers

An astronomical unit is a method that astronomers use to measure large distances in the Solar System. 1 astronomical unit, or 1 au, is the average distance from the Sun to the Earth.

The Earth’s orbit around the Sun is actually elliptical. It varies from 147 million km to 152 million km. So the measurement of an astronomical unit is just the Earth’s average distance from the Sun. That’s where the more precise measurement of 1 AU to KM (149,598,000 km) comes from.

Here are some other distances in the Solar System:
Mercury: 0.39 AU
Venus: 0.72 AU
Mars: 1.5 AU
Jupiter: 5.2 AU
Saturn: 9.6 AU
Uranus: 19.2 AU
Neptune: 30.1 AU
Pluto: 39.5 AU
Eris: 67.7 AU
Oort Cloud: 50,000 AU
Alpha Centauri: 275,000 AU

We have written many articles about large distances in space. Here’s an article that explains how far space is, and here’s an article about the distance to stars.

You can also check out this cool calculator that lets you convert astronomical units into any other distance.

We have also recorded an episode of Astronomy Cast detailing how astronomers measure distance in the Universe. Check out Episode 10: Measuring Distance in the Universe.

After Loss of Lunar Orbiter, India Looks to Mars Mission

India Moon Mission
Artist concept of Chandrayaan-1 orbiting the moon. Credit: ISRO

[/caption]
After giving up on re-establishing contact with the Chandrayaan-1 lunar orbiter, Indian Space Research Organization (ISRO) Chairman G. Madhavan Nair announced the space agency hopes to launch its first mission to Mars sometime between 2013 and 2015. Nair said the termination of Chandrayaan-1, although sad, is not a setback and India will move ahead with its plans for the Chandrayaan-2 mission to land an unmanned rover on the moon’s surface to prospect for chemicals, and in four to six years launch a robotic mission to Mars.


“We have given a call for proposal to different scientific communities,” Nair told reporters. “Depending on the type of experiments they propose, we will be able to plan the mission. The mission is at conceptual stage and will be taken up after Chandrayaan-2.”

On the decision to quickly pull the plug on Chandrayaan-1, Nair said, “There was no possibility of retrieving it. (But) it was a great success. We could collect a large volume of data, including more than 70,000 images of the moon. In that sense, 95 percent of the objective was completed.”

Contact with Chandrayaan-1 may have been lost because its antenna rotated out of direct contact with Earth, ISRO officials said. Earlier this year, the spacecraft lost both its primary and back-up star sensors, which use the positions of stars to orient the spacecraft.

The loss of Chandrayaan-1 comes less than a week after the spacecraft’s orbit was adjusted to team up with NASA’s Lunar Reconnaissance Orbiter for a Bi-static radar experiment. During the maneuver, Chandrayaan-1 fired its radar beam into Erlanger Crater on the moon’s north pole. Both spacecraft listened for echoes that might indicate the presence of water ice – a precious resource for future lunar explorers. The results of that experiment have not yet been released.

Chandrayaan-1 craft was designed to orbit the moon for two years, but lasted 315 days. It will take about 1,000 days until it crashes to the lunar surface and is being tracked by the U.S. and Russia, ISRO said.

The Chandrayaan I had 11 payloads, including a terrain-mapping camera designed to create a three-dimensional atlas of the moon. It is also carrying mapping instruments for the European Space Agency, radiation-measuring equipment for the Bulgarian Academy of Sciences and two devices for NASA, including the radar instrument to assess mineral composition and look for ice deposits. India launched its first rocket in 1963 and first satellite in 1975. The country’s satellite program is one of the largest communication systems in the world.

Sources: New Scientist, Xinhuanet