Dramatic Rocket Launch Into an Aurora

A two-stage Terrier-Black Brant rocket arced through aurora 200 miles above Earth as the Magnetosphere-Ionosphere Coupling in the Alfvén resonator (MICA) mission investigated the underlying physics of the northern lights. Stage one of the rocket has just separated and is seen falling back to Earth. Photo by Terry E. Zaperach, NASA.

[/caption]

Over the weekend, a two-stage sounding rocket launched into a sky shimmering with green aurora. On board were instruments that will help shed new light on the physical processes that create the Northern Lights and further our understanding of the complex Sun-Earth connection.

“We’re investigating what’s called space weather,” said Steven Powell from Cornell University. “Space weather is caused by the charged particles that come from the Sun and interact with the Earth’s magnetic field. We don’t directly feel those effects as humans, but our electronic systems do.”

The rocket launched on Feb. 18, 2012 from the Poker Flat Research Range in Fairbanks, Alaska. The rocket sent a stream of real-time data back before landing some 200 miles downrange shortly after the launch.

Instruments sampled electric and magnetic fields that are generated by the aurora. While the Sun heads toward solar maximum, emissions from the Sun are more likely to head Earth’s way and cause more interference with GPS transmissions, satellite internet and other signals.

“We are becoming more dependent on these signals,” Powell said. “This will help us better understand how satellite signals get degraded by space weather and how we can mitigate those effects in new and improved GPS receivers.”

Other instruments studied charged particles in Earth’s ionosphere that get sloshed back and forth by a specific form of electromagnetic energy known as Alfvén waves. These waves are thought to be a key driver of “discrete” aurora – the typical, well-defined band of shimmering lights about six miles thick and stretching east to west from horizon to horizon.

These waves are akin to a guitar string when “plucked” by energy delivered by the solar wind to Earth’s magnetosphere high above.

“The ionosphere, some 62 miles up, is one end of the guitar string and there’s another structure over a thousand miles up in space that is the other end of the string,” said Marc Lessard, who worked with graduate students from the University of New Hampshire’s Space Science Center to monitor the launch. “When it gets plucked by incoming energy we can get a fundamental frequency and other ‘harmonics’ along the background magnetic field sitting above the ionosphere.”

The rocket was a 46-foot Terrier-Black Brant model that was sent right through the aurora 350 km (217 miles) above Earth.

This is not the first sounding rocket flight from Poker Flats to launch into an aurora. In 2009 two rockets flew through aurorae to help refine current models of aurora structure, and provide insight on the high-frequency waves and turbulence generated by aurorae.

Sources: University of New Hampshire, Cornell University

ISS Night Flight in “Real Time”

We’ve featured wonderful time-lapse videos taken from the Space Station many times and each one is amazing to watch, but here’s something a little different: by taking photos at the rate of one per second and assembling them into a time-lapse, we can get a sense of what it’s like to orbit the planet at 240 miles up, 17,500 mph… in real time. Absolutely amazing!

Continue reading “ISS Night Flight in “Real Time””

Cloudy? Too Far South? How to See the Aurora No Matter Where you Live

Screenshot from the Aurora Skystation webcam in Abisko, Sweden at 10;15 UTC on January 24, 2012.

[/caption]

With the recent solar activity producing blasts of subatomic particles from the Sun to Earth’s magnetic field, the social media outlets are buzzing with those who are seeing auroral activity in their region. But what if it’s cloudy where you are, or you don’t live in a latitude conducive to seeing aurorae? The internet and webcams to the rescue! As I write this, the Aurora Sky Station webcam is broadcasting stunning views of the aurora in Sweden, like the screenshot above. But there are more webcams dedicated to capturing and sharing the aurora experience.

There’s AuroraMAX, from Yellowknife, Canada, which we’ve featured before on Universe Today. AuroraMAX is an online observatory which began streaming Canada’s northern lights live over the Internet in 2010.

In addition to nightly broadcasts of the aurora, AuroraMAX offers tips for seeing and photographing auroras, and includes an image gallery with still photos and movies from previous nights.

The Nature of Jokkmokk website from Lapland offers several different views of the night sky.

Virtual Tromsø offers an all-sky camera from Tromsø, Norway (and as I write this, the sky is covered with green auroral activity!)

The Aurora Live website is from the Poker Flat Research Range, University of Alaska Fairbanks.

All these webcams are active only when it is dark in their respective locations.

Check out NOAA’s Space Weather Prediction Center, which has maps for both the northern and southern hemispheres which shows regions of potential auroral activity.

If your skies are clear and you’re in a good location, read our guide on how best to view the aurora.

Enjoy the views!

Stunning Auroras From Around the World (January 22-23, 2012)

This photo was taken on January 22, 2012 in Fairbanks North Star Borough County, Alaska, US, using a Nikon D5000. The explodey look is due to perspective from looking right up the magnetic field lines. The aurora in the middle of the explosion is pointing straight down at the camera. Credit: Jason Ahrns

[/caption]

On January 22nd 2012, skywatchers in the northern hemisphere were rewarded with amazing displays of aurora. The cause of these displays was a Kp level 5.67 geomagnetic storm originating from solar activity on the 19th of January, produced visible aurorae throughout the northern hemisphere and viewers as far south as northeast England had great auroral views.

Here is a selection of aurora images and videos taken during the event.

More below!

Aurora over Donegal, Ireland. Credit: Brendan Alexander

Brian Horisk adventureart.co.uk hills near Dundee

Callum - Aberdeen
Looking north from the science operations center at Poker Flats, Alaska. Credit: Jason Ahrns.
David Woodford
Gerry Mcgegor - over looking John O'Groats & orkney's
Gillian C - Edinburgh
Graham Scott - Aberdeenshire
Lawrie Dryden - Kinloss
Corinne Mills - Near Dundee Scotland
Andrew Smith - St Mary's Lighthouse Whitley Bay England
Brian Smith - Clackmannanshire Scotland
Graham Scott - Aberdeenshire
Jon Porter Kielder - Northumberland England
Alan Rowe
Dean Mann - Nethybridge Highlands
Ben Hurst - Dundee
David Breen - Newcastle Upon Tyne England
David Breen - Newcastle Upon Tyne England
Aurora Webcam Sweden http://www.auroraskystation.com/live-camera/9/
Lee Jennings Cresswell Beach Northumberland England
Lee Jennings Cresswell Beach Northumberland England

An Exoplanet’s Auroral Engine

Aurora like the ones seen on October 24, 2011 as far south as Texas and Georgia would be commonplace on CoRoT-2b. (Image from the all-sky AuroraMax camera in Yellowknife, Ontario. http://twitpic.com/75owna )


Located 880 light-years away, a massive gas giant called CoRoT-2b orbits its star at a mere 2 million miles – less than a tenth the distance of Mercury’s orbit from the Sun. At this cozy proximity the star, CoRoT-2a, continually assaults the hot, gassy exoplanet with high-powered stellar winds and magnetic storms, stripping it of millions of kilograms of mass every day… and undoubtedly creating global auroras that rival even the most energetic seen on Earth.

But CoRoT-2b isn’t merely a tragic player in this stormy stellar performance; the planet itself may also be part of the cause.

[/caption]

Almost 3 1/2 times the mass of Jupiter, CoRoT-2b (so named because it was discovered by the French Space Agency’s Convection, Rotation and planetary Transits space telescope, or CoRoT) orbits its star very rapidly, completing an orbit every 1.7 days. This in turn actually speeds up the rotation of the star itself thus generating even more magnetic activity, via a dynamo effect.

Caught up in this deadly dance, CoRoT-2b is losing mass at an estimated rate of 150 million billion kilograms of material every year! The planet would likely have a long comet-like tail of this stripped material trailing behind it.

Although this sounds like a lot, CoRoT-2b has enough mass to keep “spinning up” its star for thousands of billions of years.

Read more about CoRoT-2a and b here.

Video: Science@NASA

Spooky Halloween Aurora

A spooky Halloween aurora! Credit: Jason Ahrns.

[/caption]

Did you see ghosts and goblins last night for Halloween? Jason Ahrns of Chatanika, Alaska saw a dark shadow of a spooky ghost in the middle of a green aurora stream during his observing run on October 31, 2011. He used a Nikon D5000 to snap this eerie image.

See more from Jason at his Flickr page.

Want to get your astrophoto featured on Universe Today? Join our Flickr group, post in our Forum or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Reader Pics: CME Spawns Awe-Inspiring Bright Red Aurorae

Bright red aurora seen in South Dakota. Credit: Randy Halverson, Dakotalapse.com

[/caption]

Now updated with more images and video! Reports of spectacular aurora are coming in! A CME hit Earth’s magnetic field on Oct. 24, 2011 at about 1800 UT (02:00 pm EDT), spawning some stunning red sky shows. All-red aurorae are fairly rare, and are produced by high-altitude oxygen, at heights of up to 200 miles, being excited by collisions from charged particles released from the Sun.

Above is the view by Randy Halverson, of Dakotalapse.com fame, whose work we feature often on UT. He’s not in his usual location of South Dakota, but is in Wisconsin, along with his son River Halverson. Randy said via Twitter that the brightest aurora he saw was about 8:25 or so local time (CDT).

Oct. 24, 2011 aurora seen in Yellow Springs, Ohio. Credit: John Chumack

John Chumack is another astrophotographer whose work we feature often. Here’s one of his shots of the Aurora Borealis on 10-24-2011 from John Bryan State Park, near Yellow Springs, Ohio. “30 second exposure, ISO 400, 8mm fisheye lens,” John says. See more from him on his website, Galactic Images (and he uploads frequently to our Flickr group, too!)

Taken from a driveway in northern Ohio on October 24, 2011. Credit: Joe Lloyd

Joe Lloyd from northern Ohio took this image from his driveway!

Aurora in Wichita, Kansas USA. Credit: Jim Hammer via Flickr.

Aurora reaching fairly far south in Kansas!

Below is a video from East Martin, Michigan posted on You Tube:

Aurora in Wisconsin. Credit: River Halverson and Randy Halverson from Dakotalapse

Another from Randy Halverson.

Image from the all-sky AuroraMax camera in Yellowknife, Ontario. http://twitpic.com/75owna

This is an image from the AuroraMax all-sky camera located in Yellowknife, Ontario Canada. If you can’t see aurora where you are located, you can always check out the live video every night from AuroraMax,

Here’s the event on the Sun that started it all, the coronal mass ejection (CME) that caused aurora. The SOlar Heliospheric Observatory (SOHO) captured this “coronograph” – so-called because the images block the Sun, and only show the Sun’s atmosphere, or corona.

You can see more on Universe Today’s Flickr Group. Upload your images, and we may feature them!

The Meteor and the Nordlys

Photo of the northern lights over northern Norway by Adon Buckley.

[/caption]

A meteor slices through the glow of the northern lights (or “Nordlys”) in this photo by Adon Buckley, taken near the border of Norway and Finland on the night of October 19, 2011.

“The weather was against us, it was raining heavily in the northern Norwegian town of Tromsø,” Adon describes on his Flickr page. “We drove for 2 hours and waited on the Norwegian/Finish border for 3 more and this was at the start of the show on October 19th.”

He adds, “I actually missed the shooting star when it happened, but my friend told me and I was eager to check the exposure when I got home.”

Great catch, Adon! And a wonderful photo as well.

See more of Adon’s photos on his Flickr photostream here.

Image © Adon Buckley. Used with permission.

What is Airglow?

Recent photo from the ISS showing the airglow layer

[/caption]

In many of the photos that we have featured recently from astronauts aboard the International Space Station, a glowing greenish-yellow band can be seen just above Earth’s limb. I’ve been asked before what this is, so I thought I’d explain it here. This is a phenomenon known as “airglow”.

A photochemical reaction that occurs high in the atmosphere, airglow is the result of various atoms, molecules and ions that get excited (chemistry-excited, that is… not “whee!”-excited) by ultraviolet radiation from the Sun and then release that energy as visible – as well as infrared – light when they return to their “normal” state. It’s not entirely unlike glow-in-the-dark toys or paint!

This light is most visible to the crew of the ISS when it is orbiting over the night side of the planet, and thus is seen in images like the one above. It appears like a thin band because viewing the atmosphere at a shallow angle – rather than directly down through it – increases the airglow layer’s relative visibility.

Most of visible airglow comes from oxygen atoms and molecules, which glow green… as commonly seen in the aurora. Other contributing elements include sodium and nitrogen. While present in the atmosphere at all layers, the region that glows visibly is typically constrained to a narrow band 85 – 95km (53-60 miles) high. The band itself is usually about 6 – 10km (4-6 miles) wide. The reason for this is that below those heights the atoms and molecules are more concentrated and collide more readily, releasing their energy sooner, and above it the density of the atoms is too low to do much colliding at all (to put it very simply.)

There are a lot of other factors involved with airglow as well, such as temperature and altitude, as well as different kinds of airglow depending on when in the day they occur. Nightglow is not exactly the same as dayglow, and then there’s even twilightglow… one could say there’s a lot glowing on in the upper atmosphere!

I’m here all week, folks.

You can read more about airglow in this informative article by the Institute of Astronomy and Astrophysics (Instituto de Astronomía y Física del Espacio) in Buenos Aires. Image credit: NASA.