Detecting Primordial Black Hole Mergers Might be Within Our Grasp

An artistic take on primordial black holes. Credit: NASA’s Goddard Space Flight Center

Imagine a black hole with the mass of the asteroid Ceres. It would be no larger than a bacterium and practically undetectable. But if such black holes are common in the Universe, they would affect the motions of stars and galaxies, just as we observe. Perhaps they are the source of dark matter.

Continue reading “Detecting Primordial Black Hole Mergers Might be Within Our Grasp”

Neutron Stars May be Shrouded in Extremely Light Particles Called Axions

Image from a computer simulation of the distribution of matter in the universe. Orange regions host galaxies; blue structures are gas and dark matter. Credit: TNG Collaboration

Since the 1960s, astronomers have theorized that the Universe may be filled with a mysterious mass that only interacts with “normal matter” via gravity. This mass, nicknamed Dark Matter (DM), is essential to resolving issues between astronomical observations and General Relativity. In recent years, scientists have considered that DM may be composed of axions, a class of hypothetical elementary particles with low mass within a specific range. First proposed in the 1970s to resolve problems in the Standard Model of particle physics, these particles have emerged as a leading candidate for DM.

In addition to growing evidence that this could be the case, researchers at CERN are developing a new telescope that could help the scientific community look for axions – the CERN Axion Solar Telescope (CAST). According to new research conducted by an international team of physicists, these hypothetical particles may occur in large clouds around neutron stars. These axions could be the long-awaited explanation for Dark Matter that cosmologists have spent decades searching for. What’s more, their research indicates that these axions may not be very difficult to observe from Earth.

Continue reading “Neutron Stars May be Shrouded in Extremely Light Particles Called Axions”

A New Tabletop Experiment to Search for Dark Matter

Astronomers are getting a new tool to help them in the hunt for Dark Matter. This is a rendering of the BREAD design, which stands for Broadband Reflector Experiment for Axion Detection. The ‘Hershey’s Kiss’-shaped structure funnels potential dark matter signals to the copper-colored detector on the left. The detector is compact enough to fit on a tabletop. Image courtesy BREAD Collaboration

What is Dark Matter? We don’t know. At this stage of the game, scientists are busy trying to detect it and map out its presence and distribution throughout the Universe. Usually, that involves highly-engineered, sophisticated telescopes.

But a new approach involves a device so small it can sit on a kitchen table.

Continue reading “A New Tabletop Experiment to Search for Dark Matter”

Colliding Neutron Stars are the Ultimate Particle Accelerators

This artist’s impression shows two tiny but very dense neutron stars at the point at which they merge and explode as a kilonova. Such a very rare event is expected to produce both gravitational waves and a short gamma-ray burst, both of which were observed on 17 August 2017 by LIGO–Virgo and Fermi/INTEGRAL respectively. Subsequent detailed observations with many ESO telescopes confirmed that this object, seen in the galaxy NGC 4993 about 130 million light-years from the Earth, is indeed a kilonova. Such objects are the main source of very heavy chemical elements, such as gold and platinum, in the Universe.

Gamma-ray telescopes observing neutron star collisions might be the key to identifying the composition of dark matter. One leading theory explaining dark matter it that is mostly made from hypothetical particles called axions. If an axion is created within the intensely energetic environment of two neutron stars merging, it should then decay into gamma-ray photons which we could see using space telescopes like Fermi-LAT.

Continue reading “Colliding Neutron Stars are the Ultimate Particle Accelerators”

Are Pulsars the Key to Finding Dark Matter?

A composite image of the Crab Nebula. Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech

Ah, dark matter particles, what could you be? The answer still eludes us, and astronomers keep trying new ideas to find them. Such as a new paper in Physical Review Letters that suggests if dark matter is made of axions we might see their remnant glow near pulsars.

Continue reading “Are Pulsars the Key to Finding Dark Matter?”

Dark Matter Might Interact in a Totally Unexpected Way With the Universe

Image from Dark Universe, showing the distribution of dark matter in the universe. Credit: AMNH

According to Sir Isaac Newton’s theory of Universal Gravitation, gravity is an action at a distance, where one object feels the influence of another regardless of distance. This became a central feature of Classical Newtonian Physics that remained the accepted canon for over two hundred years. By the 20th century, Einstein began reconceptualizing gravity with his theory of General Relativity, where gravity alters the curvature of local spacetime. From this, we get the principle of locality, which states that an object is directly influenced by its surroundings, and distant objects cannot communicate instantaneously.

However, the birth of quantum mechanics has caused yet another conceptualization, as physicists discovered that non-local phenomena not only exist but are fundamental to reality as we know it. This includes quantum entanglement, where the properties of one particle can be transferred to another instantaneously and regardless of distance. In a new study by the International School for Advanced Studies (SISSA) in Trieste, Italy, a team of researchers suggests that Dark Matter might interact with gravity in a non-local way.

Continue reading “Dark Matter Might Interact in a Totally Unexpected Way With the Universe”

Gravitational Lensing is Helping to Nail Down Dark Matter

Using the gravitational lensing technique, a team was able to examine how light from distant quasar was affected by intervening small clumps of dark matter. Credit: NASA/ESA/D. Player (STScI)

According to the most widely-accepted cosmological model, the majority of the mass in our Universe (roughly 85%) consists of “Dark Matter.” This elusive, invisible mass is theorized to interact with “normal” (or “visible”) matter through gravity alone and not electromagnetic fields, neither absorbing nor emitting light (hence the name “dark”). The search for this matter is ongoing, with candidate particles including Weakly-Interacting Massive Particles (WIMPs) or ultralight bosons (axions), which are at opposite extremes of the mass scale and behave very differently (in theory).

This matter’s existence is essential for our predominant theories of gravity (General Relativity) and particle physics (The Standard Model) to make sense. Otherwise, we may need to radically rethink our theories on how gravity behaves on the largest of scales (aka. Modified Gravity). However, according to new research led by the University of Hong Kong (HKU), the study of “Einstein Rings” could bring us a step closer to understanding Dark Matter. According to their paper, the way Dark Matter alters the curvature of spacetime leaves signatures that suggest it could be made up of axions!

Continue reading “Gravitational Lensing is Helping to Nail Down Dark Matter”

If Axions are Dark Matter, we've got new Hints About Where to Look for Them

Artist rendering of the dark matter halo surrounding our galaxy. For quasars, the dark matter halos are much more massive. Credit: ESO/L. Calçada
Artist rendering of the dark matter halo surrounding our galaxy. Credit: ESO/L. Calçada

If dark matter is out there, and it certainly seems to be, then what could it possibly be? That is perhaps the biggest mystery of dark matter. The only known particles that match the requirement of having mass and not interacting strongly with light are neutrinos. But neutrinos have low mass and zip through the cosmos at nearly the speed of light. They are a form of “hot” dark matter, so they don’t match the observed data that require dark matter to be “cold.” With neutrinos ruled out, cosmologists look toward various hypothetical particles we haven’t discovered, and perhaps the most popular of these are known as axions.

Continue reading “If Axions are Dark Matter, we've got new Hints About Where to Look for Them”

Missing Mass? Not on our Watch—Dr. Paul Sutter Explains Dark Matter

Credit: ArsTechnica

Do you have a few minutes to spare and a thirst for knowledge about one of the greater mysteries of the Universe? Then head on over to ArsTechnica and check out the new series they’re releasing titled Edge of Knowledge, starring none other than Dr. Paul Sutter. In what promises to be an enlightening journey, Dr. Sutter will guide viewers through an eight-episode miniseries that explores the mysteries of the cosmos, such as black holes, the future of climate change, the origins of life, and (for their premiere episode) Dark Matter!

As far as astrophysicists and cosmologists are concerned, Dark Matter is one of the most enduring, frustrating, and confusing mysteries ever! Then, one must wonder why scientists are working so tirelessly to track it down? The short answer is: the most widely accepted theories of the Universe don’t make sense without out. The long answer is… it’s both complicated and long! Luckily, Dr. Sutter manages to sum it all up in less than 15 minutes. As an accomplished physicist, he also explains why it is so important that we track Dark Matter down!

Continue reading “Missing Mass? Not on our Watch—Dr. Paul Sutter Explains Dark Matter”

A Worldwide Search for Dark Matter Fails to Turn up a Signal for This Mysterious Particle

Simulation of dark matter and gas. Credit: Illustris Collaboration (CC BY-SA 4.0)

Axions are a popular candidate in the search for dark matter. There have been previous searches for these hypothetical particles, all of which have come up with nothing. But recently the results of a new search for dark matter axions have been published…and has also found nothing. Still, the study is interesting because of the nature and scale of the search.

Continue reading “A Worldwide Search for Dark Matter Fails to Turn up a Signal for This Mysterious Particle”