Astronomers Find a Galaxy Containing Three Supermassive Black Holes at the Center

Not all galaxies are neatly shaped, as this new NASA/ESA Hubble Space Telescope image of NGC 6240 clearly demonstrates. NGC 6240 is the result of three galaxies merging. Image Credit: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

NGC 6240 is a puzzle to astronomers. For a long time, astronomers thought the galaxy is a result of a merger between two galaxies, and that merger is evident in the galaxy’s form: It has an unsettled appearance, with two nuclei and extensions and loops.

Continue reading “Astronomers Find a Galaxy Containing Three Supermassive Black Holes at the Center”

The Lowest Mass Black Hole has Been Found, only 3.3 Times the Mass of the Sun

An artist's rendering of the black hole astrophysicists identified in this study. The black hole (bottom left) is seen near a red giant star. The discovery shows there may be an entire class of black holes astronomers did not know existed. Credit: Ohio State/Jason Shults

Black holes are one of the most awesome and mysterious forces of nature. At the same time, they are fundamental to our understanding of astrophysics. Not only are black holes the result of particularly massive stars that go supernova at the end of their lives, they are also key to our understanding of General Relativity and are believed to have played a role in cosmic evolution.

Because of this, astronomers have diligently been trying to create a census of black holes in the Milky Way galaxy for many years. However, new research indicates that astronomers may have overlooked an entire class of black holes. This comes from a recent discovery where a team of astronomers observed a black hole that is just over three Solar masses, making it the smallest black hole discovered to date.

Continue reading “The Lowest Mass Black Hole has Been Found, only 3.3 Times the Mass of the Sun”

New Technique for Estimating the Mass of a Black Hole

A Hubble Space Telescope view of M87's core and its jet. it points nearly directly at us and is also known as a blazar. Astronomers are studying other blazars that have meandering jets and think that binary black holes may be hidden inside some of them. Courtesy STScI.
A Hubble Space Telescope view of M87's core and its jet. it points nearly directly at us and is also known as a blazar. Astronomers are studying other blazars that have meandering jets and think that binary black holes may be hidden inside some of them. Courtesy STScI.

Black holes are the one the most intriguing and awe-inspiring forces of nature. They are also one of the most mysterious because of the way the rules of conventional physics break down in their presence. Despite decades of research and observations there is still much we don’t know about them. In fact, until recently, astronomers had never seen an image of black hole and were unable to guage their mass.

However, a team of physicist from the Moscow Institute of Physics and Technology (MIPT) recently announced that they had devised a way to indirectly measure the mass of a black hole while also confirming its existence. In a recent study, they showed how they tested this method on the recently-imaged supermassive black hole at the center of the Messier 87 active galaxy.

Continue reading “New Technique for Estimating the Mass of a Black Hole”

Astronomers Have Found a Place With Three Supermassive Black Holes Orbiting Around Each Other

The three black holes at the center of three separate galaxies as imaged by Chandra and other telescopes. Image Credit: Credit: X-ray: NASA/CXC/George Mason Univ./R. Pfeifle et al.; Optical: SDSS & NASA/STScI

Astronomers have spotted three supermassive black holes (SMBHs) at the center of three colliding galaxies a billion light years away from Earth. That alone is unusual, but the three black holes are also glowing in x-ray emissions. This is evidence that all three are also active galactic nuclei (AGN,) gobbling up material and flaring brightly.

This discovery may shed some light on the “final parsec problem,” a long-standing issue in astrophysics and black hole mergers.

Continue reading “Astronomers Have Found a Place With Three Supermassive Black Holes Orbiting Around Each Other”

The Most Massive Neutron Star has been Found. It’s ALMOST the Most Massive Neutron Star That’s Even Possible

Artist's illustration of a rotating neutron star, the remnants of a super nova explosion. Credit: NASA, Caltech-JPL

Neutron stars are the end-state of massive stars that have spent their fuel and exploded as supernovae. There’s an upper limit to their mass, because a massive enough star won’t become a neutron star; it’ll become a black hole. But finding that upper mass limit, or tipping point, between a star that becomes a black hole and one that becomes a neutron star, is something astronomers are still working on.

Now a new discovery from astronomers using the National Science Foundation’s (NSF) Green Bank Telescope (GBT) have found the most massive neutron star yet, putting some solid data in place about the so-called tipping point.

Continue reading “The Most Massive Neutron Star has been Found. It’s ALMOST the Most Massive Neutron Star That’s Even Possible”

Milky Way’s Black Hole Just Flared, Growing 75 Times as Bright for a Few Hours

Illustration of the supermassive black hole at the center of the Milky Way. Credit: NRAO/AUI/NSF
Illustration of the supermassive black hole at the center of the Milky Way. It's huge, with over 4 times the mass of the Sun. But ultramassive black holes are even more massive and can contain billions of solar masses. Image Credit: Credit: NRAO/AUI/NSF

Even though the black hole at the center of the Milky Way is a monster, it’s still rather quiet. Called Sagittarius A*, it’s about 4.6 million times more massive than our Sun. Usually, it’s a brooding behemoth. But scientists observing Sgr. A* with the Keck Telescope just watched as its brightness bloomed to over 75 times normal for a few hours.

Continue reading “Milky Way’s Black Hole Just Flared, Growing 75 Times as Bright for a Few Hours”

A Monster Black Hole has been Found with 40 Billion Times the Mass of the Sun

A composite image of the Abell 85 galaxy cluster. The purple is multi-million degree gas detected in X-rays by NASA's Chandra X-ray Observatory and the other colors show galaxies in an optical image from the Sloan Digital Sky Survey. Image Credit: X-ray (NASA/CXC/SAO/A.Vikhlinin et al.); Optical (SDSS); Illustration (MPE/V.Springel)

If contemplating the vast size of astronomical objects makes you feel rather puny and insignificant, then this new discovery will make you feel positively infinitesimal.

It’s almost impossible to imagine an object this large: a super massive black hole that’s 40 billion times more massive than our Sun. But there it is, sitting in the center of a super-giant elliptical galaxy called Holmberg 15A. Holmberg 15A is about 700 million light years away, in the center of the Abell 85 galaxy cluster.

Continue reading “A Monster Black Hole has been Found with 40 Billion Times the Mass of the Sun”

Astronomers See Evidence of Supermassive Black Holes Forming Directly in the Early Universe

An illustration of a Super-Massive Black Hole. Image Credit: Scott Woods, Western University

Super-Massive Black Holes (SMBH) are hard to explain. These gargantuan singularities are thought to be at the center of every large galaxy (our Milky Way has one) but their presence there sometimes defies easy explanation. As far as we know, black holes form when giant stars collapse. But that explanation doesn’t fit all the evidence.

Continue reading “Astronomers See Evidence of Supermassive Black Holes Forming Directly in the Early Universe”

Black Hole Simulation Solves a Mystery About Their Accretion Disks

Credit: ESA/Hubble, ESO, M. Kornmesser
Researchers at WSU have created a fluid with a negative effective mass for the first time, which could open the door to studying the deeper mysteries of the Universe. Credit: ESA/Hubble, ESO, M. Kornmesse

Black holes are one of the most awesome and mysterious forces in the Universe. Originally predicted by Einstein’s Theory of General Relativity, these points in spacetime are formed when massive stars undergo gravitational collapse at the end of their lives. Despite decades of study and observation, there is still much we don’t know about this phenomenon.

For example, scientists are still largely in the dark about how the matter that falls into orbit around a black hole and is gradually fed onto it (accretion disks) behave. Thanks to a recent study, where an international team of researchers conducted the most detailed simulations of a black hole to date, a number of theoretical predictions regarding accretion disks have finally been validated.

Continue reading “Black Hole Simulation Solves a Mystery About Their Accretion Disks”

Is Dark Matter Made of Axions? Black Holes May Reveal the Answer

The early universe. Credit: Tom Abel & Ralf Kaehler (KIPACSLAC)/ AMNH/NASA

What is dark matter made of? It’s one of the most perplexing questions of modern astronomy. We know that dark matter is out there, since we can see its obvious gravitational influence on everything from galaxies to the evolution of the entire universe, but we don’t know what it is. Our best guess is that it’s some sort of weird new particle that doesn’t like to talk to normal matter very often (otherwise we would have seen it by now). One possibility is that it’s an exotic hypothetical kind of particle known as an axion, and a team of astronomers are using none other than black holes to try to get a glimpse into this strange new cosmic critter.

Continue reading “Is Dark Matter Made of Axions? Black Holes May Reveal the Answer”