Here’s What the First Images from the Event Horizon Might Look Like

Researchers using the Event Horizon Telescope hope to generate more and better images like this of supermassive black hole Sag. A's event horizon. Image Credit: EHT.
Researchers using the Event Horizon Telescope hope to generate more and better images like this of supermassive black hole Sag. A's event horizon. Image Credit: EHT.

The largest object in our night sky—by far!—is invisible to us. The object is the Super-Massive Black Hole (SMBH) at the center of our Milky Way galaxy, called Sagittarius A. But soon we may have an image of Sagittarius A’s event horizon. And that image may pose a challenge to Einstein’s Theory of General Relativity.

Continue reading “Here’s What the First Images from the Event Horizon Might Look Like”

Dark Matter Isn’t Made From Black Holes

A supernova (bright spot at lower left) and its host galaxy (upper center), as they would appear if gravitationally lensed by an intervening black hole (center). Credit: Miguel Zumalacárregui/UC Berkeley

In February of 2016, scientists working for the Laser Interferometer Gravitational-Wave Observatory (LIGO) made history when they announced the first-ever detection of gravitational waves. Since that time, multiple detections have taken place and scientific collaborations between observatories  – like Advanced LIGO and Advanced Virgo – are allowing for unprecedented levels of sensitivity and data sharing.

This event not only confirmed a century-old prediction made by Einstein’s Theory of General Relativity, it also led to a revolution in astronomy. It also stoked the hopes of some scientists who believed that black holes could account for the Universe’s “missing mass”. Unfortunately, a new study by a team of UC Berkeley physicists has shown that black holes are not the long-sought-after source of Dark Matter.

Continue reading “Dark Matter Isn’t Made From Black Holes”

Matter is Going Into this Black Hole at 30% the Speed of Light

This image shows how misaligned discs of matter can cause matter to fall into a black hole at 30% of the speed of light. The observations confirm theoretical work showing this high speed was possible. Image: K. Pounds et al. / University of Leicester
This image shows how misaligned discs of matter can cause matter to fall into a black hole at 30% of the speed of light. The observations confirm theoretical work showing this high speed was possible. Image: K. Pounds et al. / University of Leicester

A team of researchers in the UK have observed matter falling into a black hole at 30% the speed of light. This is much faster than anything previously observed. The high velocity is a result of misaligned discs of material rotating around the black hole.

Continue reading “Matter is Going Into this Black Hole at 30% the Speed of Light”

Evidence for Thousands of Black Holes Buzzing Around the Center of the Milky Way

On September 14th, 2013, astronomers caught the largest X-ray flare ever detected from the supermassive black hole at the center of the Milky Way, known as Sagittarius A* (Sgr A*). Credit: NASA/CXC/Stanford/I. Zhuravleva et al.

Since the 1970s, astronomers have understood that a Supermassive Black Hole (SMBH) resides at the center of the Milky Way Galaxy. Located about 26,000 light-years from Earth between the Sagittarius and Scorpius constellations, this black hole has come to be known as Sagittarius A* (Sgr A*). Measuring 44 million km across, this object is roughly 4 million times as massive as our Sun and exerts a tremendous gravitational pull.

Since that time, astronomers have discovered that most massive galaxies have SMBHs at their core, which is what separates those that have an Active Galactic Nuclei (AGN) from those that don’t. But thanks to a recent survey conducted using NASA’s Chandra X-ray Observatory, astronomers have discovered evidence for hundreds or even thousands of black holes located near the center of the Milky Way Galaxy.

The study which described their findings was recently published in the journal Nature under the title “A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy“. The study was led by Chuck Hailey, the Pupin Professor of Physics and the Co-Director of the Columbia Astrophysics Laboratory (CAL) at Columbia University, and including members from the Instituto de Astrofísica at the Pontificia Universidad Católica de Chile and the Harvard-Smithsonian Center for Astrophysics.

The center of the Milky Way Galaxy, with X-ray binaries circled in red, other X-ray sources circled in yellow, and Sagittarius A* circled in blue at the center. Credit: NASA/CXC/Columbia University/C. Hailey et al.

Using Chandra data, the team searched for X-ray binaries containing black holes that were in the vicinity of Sgr A*. To recap, black holes are not detectable in visible light. However, black holes (or neutron stars) that are locked in close orbits with a star will pull material from their companions, which will then be accreted onto the black holes’ disks and heated up to millions of degrees.

This will result in the release of X-rays which can then be detected, hence why these systems are called “X-ray binaries”. Using Chandra data, the team sought out X-ray of sources that were located within roughly 12 light years of Sgr A*. They then selected sources with X-ray spectra similar to those of known X-ray binaries, which emit relatively large amounts of low-energy X-rays.

Using this method, they detected fourteen X-ray binaries within about three light years of Sgr A*, all of which contained stellar-mass black holes (between 5 and 30 times the mass of our Sun). Two of these sources had been identified by previous studies and were eliminated from the analysis, while the remaining twelve (circled in red in the image above) were newly-discovered.

Other sources which relatively large amounts of high energy X-rays (labeled in yellow) were believed to be binaries containing white dwarfs. Hailey and his colleagues concluded that the majority of the dozen X-ray binaries were likely to contain black holes, based on their variability and the fact that their X-ray emissions over the course of several years was different from what is expected from binaries containing neutron stars.

Artist”s impression of a black hole binary, consisting of a black hole siphoning material from its companion. Credit: ESO/L. Calçada

Given that only the brightest X-ray binaries containing black holes are likely to be detectable around Sgr A* (given its distance from Earth), Hailey and his colleagues concluded that this detection implies the existence of a much larger population. By their estimates, there could be at least 300 and as many as one thousand stellar-mass black holes present around Sgr A*.

These findings confirmed what theoretical studies on the dynamics of stars in galaxies have indicated in the past. According to these studies, a large population of stellar mass black holes (as many as 20,000) could drift inward over the course of millions of years and collect around an SMBH. However, the recent analysis conducted by Hailey and his colleagues was the first observational evidence of black holes congregating near Sgr A*.

Naturally, the authors acknowledge that there are other explanations for the X-ray emissions they detected. This includes the possibility that half of the dozen sources they observed are millisecond pulsars – very rapidly rotating neutron stars with strong magnetic fields. However, based on their observations, Hailey and his team strongly favor the black hole explanation.

In addition, a follow-up study conducted by Aleksey Generozov (et al.) of Columbia University – titled “An Overabundance of Black Hole X-Ray Binaries in the Galactic Center from Tidal Captures” – indicated that there could be as many as 10,000 to 40,000 black holes binaries at the center of our galaxy. According to this study, these binaries would be the result of companions being captured by black holes.

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.
Artist’s impression of merging binary black holes. Credit: LIGO/A. Simonnet.

In addition to revealing much about the dynamics of stars in our galaxy, this study has implications for the emerging field of gravitational wave (GW) research. Essentially, by knowing how many black holes reside at the center of galaxies (which will periodically merge with one another), astronomers will be able to better predict how many gravitational wave events are associated with them.

From this, astronomers could create predictive models about when and how GW events are likely to happen, and well as discerning what role they may play in galactic evolution. And with next-generation instruments – like the James Webb Space Telescope (JWST) and the ESA’s Advanced Telescope for High Energy Astrophysics (ATHENA) – astronomers will be able to determine exactly how many black holes reside near the center of our galaxy.

 

 

Further Reading: NASA

Astronomy Cast Ep. 489: Black Hole Update

Another update episode, this time we look at what’s new and changed in the research of black holes. And it’s here that we find a lot of substantial new discoveries in the field, so much has been discovered since we first covered black holes a decade ago.

We usually record Astronomy Cast every Friday at 3:00 pm EST / 12:00 pm PST / 20:00 PM UTC. You can watch us live on AstronomyCast.com, or the AstronomyCast YouTube page.

Visit the Astronomy Cast Page to subscribe to the audio podcast!

If you would like to support Astronomy Cast, please visit our page at Patreon here – https://www.patreon.com/astronomycast. We greatly appreciate your support!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

How to Listen to the Background Hum of Gravitational Waves From all the Black Holes Colliding into Each Other

Artist's impression of two merging black holes. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS
Artist's impression of two merging black holes. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS

The first-ever detection of gravitational waves (which took place in September of 2015) triggered a revolution in astronomy. Not only did this event confirm a theory predicted by Einstein’s Theory of General Relativity a century before, it also ushered in a new era where the mergers of distant black holes, supernovae, and neutron stars could be studied by examining their resulting waves.

In addition, scientists have theorized that black hole mergers could actually be a lot more common than previously thought. According to a new study conducted by pair of researchers from Monash University, these mergers happen once every few minutes. By listening to the background noise of the Universe, they claim, we could find evidence of thousands of previously undetected events.

Their study, titled “Optimal Search for an Astrophysical Gravitational-Wave Background“, recently appeared in the journal Physical Review X. The study was conducted by Rory Smith and Eric Thrane, a senior lecturer and a research fellow at Monash University, respectively. Both researchers are also members of the ARC Center of Excellence for Gravitational Wave Discovery (OzGrav).

Drs. Eric Thrane and Rory Smith. Credit: Monash University

As they state in their study, every 2 to 10 minutes, a pair of stellar-mass black holes merge somewhere in the Universe. A small fraction of these are large enough that the resulting gravitational wave event can be detected by advanced instruments like the Laser Interferometer Gravitational-Wave Observatory and Virgo observatory. The rest, however, contribute to a sort of stochastic background noise.

By measuring this noise, scientists may be able to study much more in the way of events and learn a great deal more about gravitational waves. As Dr Thrane explained in a Monash University press statement:

“Measuring the gravitational-wave background will allow us to study populations of black holes at vast distances. Someday, the technique may enable us to see gravitational waves from the Big Bang, hidden behind gravitational waves from black holes and neutron stars.”

Drs Smith and Thrane are no amateurs when it comes to the study of gravitational waves. Last year, they were both involved in a major breakthrough, where researchers from LIGO Scientific Collaboration (LSC) and the Virgo Collaboration measured gravitational waves from a pair of merging neutron stars. This was the first time that a neutron star merger (aka. a kilonova) was observed in both gravitational waves and visible light.

The pair were also part of the Advanced LIGO team that made the first detection of gravitational waves in September 2015. To date, six confirmed gravitational wave events have been confirmed by the LIGO and Virgo Collaborations. But according to Drs Thrane and Smith, there could be as many as 100,000 events happening every year that these detectors simply aren’t equipped to handle.

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.
Artist’s impression of merging binary black holes. Credit: LIGO/A. Simonnet.

These waves are what come together to create a gravitational wave background; and while the individual events are too subtle to be detected, researchers have been attempting to develop a method for detecting the general noise for years. Relying on a combination of computer simulations of faint black hole signals and masses of data from known events, Drs. Thrane and Smith claim to have done just that.

From this, the pair were able to produce a signal within the simulated data that they believe is evidence of faint black hole mergers. Looking ahead, Drs Thrane and Smith hope to apply their new method to real data, and are optimistic it will yield results. The researchers will also have access to the new OzSTAR supercomputer, which was installed last month at the Swinburne University of Technology to help scientists to look for gravitational waves in LIGO data.

This computer is different from those used by the LIGO community, which includes the supercomputers at CalTech and MIT. Rather than relying on more traditional central processing units (CPUs), OzGrav uses graphical processor units – which can be hundreds of times faster for some applications. According to Professor Matthew Bailes, the Director of the OzGRav supercomputer:

“It is 125,000 times more powerful than the first supercomputer I built at the institution in 1998… By harnessing the power of GPUs, OzStar has the potential to make big discoveries in gravitational-wave astronomy.”

What has been especially impressive about the study of gravitational waves is how it has progressed so quickly. From the initial detection in 2015, scientists from Advanced LIGO and Virgo have now confirmed six different events and anticipate detecting many more. On top of that, astrophysicists are even coming up with ways to use gravitational waves to learn more about the astronomical phenomena that cause them.

All of this was made possible thanks to improvements in instrumentation and growing collaboration between observatories. And with more sophisticated methods designed to sift through archival data for additional signals and background noise, we stand to learn a great deal more about this mysterious cosmic force.

Further Reading: Monash, Physical Review X

Dense Star Clusters Could be the Places Where Black Hole Mergers are Common

A snapshot of a simulation showing a binary black hole formed in the center of a dense star cluster. Credit: Northwestern Visualization/Carl Rodriguez

In February of 2016, scientists working for the Laser Interferometer Gravitational-Wave Observatory (LIGO) made history when they announced the first-ever detection of gravitational waves. Not only did this discovery confirm a century-old prediction made by Einstein’s Theory of General Relativity, it also confirmed the existence of stellar binary black holes – which merged to produce the signal in the first place.

And now, an international team led by MIT astrophysicist Carl Rodriguez has produced a study that suggests that  black holes may merge multiple times. According to their study, these “second-generation mergers” likely occur within globular clusters, the large and compact star clusters that typically orbit at the edges of galaxies – and which are densely-packed with hundreds of thousands to millions of stars.

The study, titled “Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers“, recently appeared in the Physical Review Letters. The study was led by Carl Rodriguez, a Pappalardo fellow in MIT’s Department of Physics and the Kavli Institute for Astrophysics and Space Research, and included members from the Institute of Space Sciences and the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA).

As Carl Rodriguez explained in a recent MIT press release:

“We think these clusters formed with hundreds to thousands of black holes that rapidly sank down in the center. These kinds of clusters are essentially factories for black hole binaries, where you’ve got so many black holes hanging out in a small region of space that two black holes could merge and produce a more massive black hole. Then that new black hole can find another companion and merge again.”

Globular clusters have been a source of fascination ever since astronomers first observed them in the 17th century. These spherical collections of stars are among the oldest known stars in the Universe, and can be found in most galaxies. Depending on the size and type of galaxy they orbit, the number of clusters varies, with elliptical galaxies hosting tens of thousands while galaxies like the Milky Way have over 150.

For years, Rodriguez has been investigating the behavior of black holes within globular clusters to see if they interact with their stars differently from black holes that occupy less densely-populated regions in space. To test this hypothesis, Rodriguez and his colleagues used the Quest supercomputer at Northwestern University to conduct simulations on 24 stellar clusters.

These clusters ranged in size from 200,000 to 2 million stars and covered a range of different densities and metallic compositions. The simulations modeled the evolution of individual stars within these clusters over the course of 12 billion years. This span of time was enough to follow these stars as they interacted with each other, and eventually formed black holes.

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.
Artist’s impression of merging binary black holes. Credit: LIGO/A. Simonnet.

The simulations also modeled the evolution and trajectories of black holes once they formed. As Rodriguez explained:

“The neat thing is, because black holes are the most massive objects in these clusters, they sink to the center, where you get a high enough density of black holes to form binaries. Binary black holes are basically like giant targets hanging out in the cluster, and as you throw other black holes or stars at them, they undergo these crazy chaotic encounters.”

Whereas previous simulations were based on Newton’s physics, the team decided to add Einstein’s relativistic effects into their simulations of globular clusters. This was due to the fact that gravitational waves were not predicted by Newton’s theories, but by Einstein’s Theory of General Relativity. As Rodriguez indicated, this allowed for them to see how gravitational waves played a role:

“What people had done in the past was to treat this as a purely Newtonian problem. Newton’s theory of gravity works in 99.9 percent of all cases. The few cases in which it doesn’t work might be when you have two black holes whizzing by each other very closely, which normally doesn’t happen in most galaxies… In Einstein’s theory of general relativity, where I can emit gravitational waves, then when one black hole passes near another, it can actually emit a tiny pulse of gravitational waves. This can subtract enough energy from the system that the two black holes actually become bound, and then they will rapidly merge.”

Artist’s conception shows two merging black holes similar to those detected by LIGO on January 4th, 2017. Credit: LIGO/Caltech

What they observed was that inside the stellar clusters, black holes merge with each other to create new black holes. In previous simulations, Newtonian gravity predicted that most binary black holes would be kicked out of the cluster before they could merge. But by taking relativistic effects into account, Rodriguez and his team found that nearly half of the binary black holes merged to form more massive ones.

As Rodriguez explained, the difference between those that merged and those that were kicked out came down to spin:

“If the two black holes are spinning when they merge, the black hole they create will emit gravitational waves in a single preferred direction, like a rocket, creating a new black hole that can shoot out as fast as 5,000 kilometers per second — so, insanely fast. It only takes a kick of maybe a few tens to a hundred kilometers per second to escape one of these clusters.”

This raised another interesting fact about previous simulations, where astronomers believed that the product of any black hole merger would be kicked out of the cluster since most black holes are assumed to be rapidly spinning. However, the gravity wave measurements recently obtained from LIGO appear to contradict this, which has only detected the mergers of binary black holes with low spins.

Artist’s impression of two merging black holes. Credit: Bohn, Throwe, Hébert, Henriksson, Bunandar, Taylor, Scheel/SXS

This assumption, however, seems to contradict the measurements from LIGO, which has so far only detected binary black holes with low spins. To test the implications of this, Rodriguez and his colleagues reduced the spin rates of the black holes in their simulations. What they found was that nearly 20% of the binary black holes from clusters had at least one black hole that ranged from being 50 to 130 solar masses.

Essentially, this indicated that these were “second generation” black holes, since scientists believe that this mass cannot be achieved by a black hole that formed from a single star. Looking ahead, Rodriguez and his team anticipate that if LIGO detects an object with a mass within this range, it is likely the result of black holes merging within dense stellar cluster, rather than from a single star.

“If we wait long enough, then eventually LIGO will see something that could only have come from these star clusters, because it would be bigger than anything you could get from a single star,” Rodriguez says. “My co-authors and I have a bet against a couple people studying binary star formation that within the first 100 LIGO detections, LIGO will detect something within this upper mass gap. I get a nice bottle of wine if that happens to be true.”

The detection of gravitational waves was a historic accomplishment, and one that has enabled astronomers to conduct new and exciting research. Already, scientists are gaining new insight into black holes by studying the byproduct of their mergers. In the coming years, we can expect to learn a great deal more thanks to improve methods and increased cooperation between observatories.

Further Reading: MIT, Physical Review Letters

Astronomers Figure Out How to use Gravitational Lensing to Measure the Mass of White Dwarfs

The technique of gravitational lensing relies on the presence of a large cluster of matter between the observer and the object to magnify light coming from that object. Credit: NASA

For the sake of studying the most distant objects in the Universe, astronomers often rely on a technique known as Gravitational Lensing. Based on the principles of Einstein’s Theory of General Relativity, this technique involves relying on a large distribution of matter (such as a galaxy cluster or star) to magnify the light coming from a distant object, thereby making it appear brighter and larger.

However, in recent years, astronomers have found other uses for this technique as well. For instance, a team of scientists from the Harvard-Smithsonian Center for Astrophysics (CfA) recently determined that Gravitational Lensing could also be used to determine the mass of white dwarf stars. This discovery could lead to a new era in astronomy where the mass of fainter objects can be determined.

The study which details their findings, titled “Predicting gravitational lensing by stellar remnants” appeared in the Monthly Noticed of the Royal Astronomical Society. The study was led by Alexander J. Harding of the CfA and included Rosanne Di Stefano, and Claire Baker (also from the CfA), as well as members from the University of Southampton, Georgia State University, the University of Nigeria, and Cornell University.

A Hubble image of the white dwarf star PM I12506+4110E (the bright object, seen in black in this negative print) and its field which includes two distant stars PM12-MLC1&2. Credit: Harding et al./NASA/HST

To put it simply, determining the mass of an astronomical object is one the greatest challenges for astronomers. Until now, the most successful method relied on binary systems because the orbital parameters of these systems depend on the masses of the two objects. Unfortunately, objects that are at the end states of stellar evolution – like black holes, neutron stars or white dwarfs – are often too faint or isolated to be detectable.

This is unfortunate, since these objects are responsible for a lot of dramatic astronomical events. These include the accretion of material, the emission of energetic radiation, gravitational waves, gamma-ray bursts, or supernovae. Many of these events are still a mystery to astronomers or the study of them is still in its infancy – i.e. gravitational waves. As they state in their study:

“Gravitational lensing provides an alternative approach to mass measurement. It has the advantage of only relying on the light from a background source, and can therefore be employed even for dark lenses. In fact, since light from the lens can interfere with the detection of lensing effects, compact objects are ideal lenses.”

As they go on to state, of the 18,000 lensing events that have been detected to date, roughly 10 to 15% are believed to have been caused by compact objects. However, scientists are unable to tell which of the detected events were due to compact lenses. For the sake of their study then, the team sought to circumvent this problem by identifying local compact objects and predicting when they might produce a lensing event so they could be studied.

Animation showing the white dwarf star Stein 2051B as it passes in front of a distant background star. Credit: NASA

“By focusing on pre-selected compact objects in the near vicinity of the Sun, we ensure that the lensing event will be caused by a white dwarf, neutron star, or black hole,” they state. “Furthermore, the distance and proper motion of the lens can be accurately measured prior to the event, or else afterwards. Armed with this information, the lensing light curve allows one to accurately measure the mass of the lens.”

In the end, the team determined that lensing events could be predicted from thousands of local objects. These include 250 neutron stars, 5 black holes, and roughly 35,000 white dwarfs. Neutron stars and black holes present a challenge since the known populations are too small and their proper motions and/or distances are not generally known.

But in the case of white dwarfs, the authors anticipate that they will provide for many lensing opportunities in the future. Based on the general motions of the white dwarfs across the sky, they obtained a statistical estimate that about 30-50 lensing events will take place per decade that could be spotted by the Hubble Space Telescope, the ESA’s Gaia mission, or NASA’s James Webb Space Telescope (JWST). As they state in their conclusions:

“We find that the detection of lensing events due to white dwarfs can certainly be observed during the next decade by both Gaia and HST. Photometric events will occur, but to detect them will require observations of the positions of hundreds to thousands of far-flung white dwarfs. As we learn the positions, distances to, and proper motions of larger numbers of white dwarfs through the completion of surveys such as Gaia and through ongoing and new wide-field surveys, the situation will continue to improve.”

The future of astronomy does indeed seem bright. Between improvements in technology, methodology, and the deployment of next-generation space and ground-based telescopes, there is no shortage of opportunities to see and learn more.

Further Reading: CfA, MNRAS