Weekly Space Hangout – September 20, 2013: Antares Launch, Rocket Armadillo, ISON Craziness

It’s Friday so it’s space hangout time. Join Universe Today publisher Fraser Cain and a crew of space journalists as they discuss the big stories of the week. We’ve got the launch of the Antares rocket, a freaked out armadillo, an unexpected end to Deep Impact, ISON conspiracy madness, and more. We were joined by our regulars, but it was Elizabeth Howell’s first time. She’s been a long-time contributor to Universe Today, but this was the first time she’s joined the Weekly Space Hangout.

Host: Fraser Cain

Commentary: Amy Shira Teitel, David Dickinson, Elizabeth Howell, Jason Major

Antares Launches to the Space Station
Antares Freaks Out Armadillo
Ending for Deep Impact
More ISON Craziness
No Methane on Mars
Did the Universe Come From a Black Hole
I Didn’t Think He’d Drown
Rubber Room Under the Launch Pad

We record the Weekly Space Hangout every Friday afternoon at 12:00 Pacific, 3:00 Eastern, or 20:00 GMT. You can watch it live on Google+ or on Universe Today. You can also get the audio version within the 365 Days of Astronomy Podcast.

Watch Live Webcast: Black Holes and Our Cosmic Evolution

A view of Sgr A* and the supermassive black hole located 26,000 light years from Earth in the center of the Milky Way. Credit: Chandra Telescope, NASA.

How do supermassive black holes form, and what role do they play in shaping galaxies and galaxy clusters? On Wednesday, September 11, 2013 at 19:00 UTC (12:00 p.m. PDT, 3:00 pm EDT) the Kavli Foundation is hosting a live Google+ Hangout to answer your questions about black holes. Participants in the Hangout will be Roger Blandford from the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, Priyamvada Natarajan from Yale University, and John Wise from the Georgia Institute of Technology.

You can watch live below. To submit questions ahead of time or during the webcast, email to [email protected] or post on Twitter with hashtag #KavliLive.

You can see more information about the webcast at the Kavli Foundation website. There will also be a followup Hangout on September 25 that will focus on black holes and the “firewall paradox” that made news in recent weeks, featuring noted researcher Leonard Susskind. We’ll post a new article with that webcast as the day approaches.

Weekly Space Hangout – Sept. 6, 2013: LADEE Launch, Chris Kraft, Life From Mars, SpaceShipTwo and More

We missed a week, but now we’re back with the Weekly Space Hangout… back with a vengeance, with a full crew of 8 space journalists. We talked about the upcoming LADEE Launch, the test flight of SpaceShipTwo, an interview with Chris Kraft and much much more.

Host: Fraser Cain

Journalists: Alan Boyle, Amy Shira Teitel, Casey Dreier, Jason Major, Dr. Nicole Gugliucci, David Dickinson, and Eric Berger

LADEE Launch Set for Friday Night
Get Involved with LADEE
Chris Kraft on NASA
Did Life on Earth Come From Mars
Deep Impact… Dead?
Kepler Re-purposing Ideas
SpaceShipTwo Test
Europa Clipper Mission Update
M87 Jet Seen By Hubble
Black Hole Shuts Down Star Formation

We broadcast the Weekly Space Hangout as a live Google+ Hangout on Air every Friday at 12:00pm Pacific / 3:00pm Eastern. You can watch the show on Universe Today, or from the Cosmoquest Event when we post it.

When do Black Holes Become Active? The Case of the Strangely-Shaped Galaxy Mrk 273

Mrk 273 as seen by the Hubble Space Telescope.

The Hubble image above shows a strange galaxy, known as Mrk 273.  The odd shape – including the infrared bright center and the long tail extending into space for 130 thousand light-years – is strongly indicative of a merger between galaxies.

Near-infrared observations have revealed a nucleus with multiple components, but for years the details of such a sight have remained obscured by dust. With further data from the Keck Telescope, based in Hawaii, astronomers have verified that this object is the result of a merger between galaxies, with the infrared bright center consisting of two active galactic nuclei – intensely luminous cores powered by supermassive black holes.

At the center of every single galaxy is a supermassive black hole. While the name sounds exciting, our supermassive black hole, Sgr A* is pretty quiescent.  But at the center of every early galaxy looms the opposite: an active galactic nuclei (AGN for short). There are plenty of AGN in the nearby Universe as well, but the question stands: how and when do these black holes become active?

In order to find the answer astronomers are looking at merging galaxies. When two galaxies collide, the supermassive black holes fall toward the center of the merged galaxy, resulting in a binary black hole system. At this stage they remain quiescent black holes, but are likely to become active soon.

“The accretion of material onto a quiescent black hole at the center of a galaxy will enable it to grow in size, leading to the event where the nucleus is “turned on” and becomes active,” Dr. Vivian U, lead author on the study, told Universe Today. “Since galaxy interaction provides means for gaseous material in the progenitor galaxies to lose angular momentum and funnels toward the center of the system, it is thought to play a role in triggering AGN.  However, it has been difficult to pinpoint exactly how and when in a merging system this triggering occurs.”

While it has been known that an AGN can “turn on” before the final coalescence of the two black holes, it is unknown as to when this will happen. Quite a few systems do not host dual AGN.  For those that do, we do not know whether synchronous ignition occurs or not.

Mrk 273 provides a powerful example to study. The team used near-infrared instruments on the Keck Telescope in order to probe past the dust.  Adaptive optics also removed the blurring affects caused by the Earth’s atmosphere, allowing for a much cleaner image – matching the Hubble Space Telescope, from the ground.

“The punch line is that Mrk 273, an advanced late-stage galaxy merger system, hosts two nuclei from the progenitor galaxies that have yet to fully coalesce,” explains Dr. U. The presence of two supermassive black holes can be easily discerned from the rapidly rotating gas disks that surround the two nuclei.

“Both nuclei have already been turned on as evidenced by collimated outflows (a typical AGN signature) that we observe” Dr. U told me. Such a high amount of energy released from both supermassive black holes suggests that Mrk 273 is a dual AGN system. These exciting results mark a crucial step in understanding how galaxy mergers may “turn on” a supermassive black hole.

The team has collected near-infrared data for a large sample of galaxy mergers at different merging states.  With the new data set, Dr. U aims “to understand how the nature of the nuclear star formation and AGN activity may change as a galaxy system progresses through the interaction.”

The results will be published in the Astrophysical Journal (preprint available here).

 

Weekly Space Hangout – Aug. 16, 2013

Like your space news, but you just can’t handle reading any more? Then watch our Weekly Space Hangout, where we give you a rundown of all the big space news stories that broke this week.

Host: Fraser Cain

Panel: Brian Koberlein, David Dickinson, Nancy Atkinson, Nicole Gugliucci

Stories:
CIA Comes Clean About Area 51
Elon Musk’s Hyperloop
Space Fence Shut Down
Magnetar Discovered Near the Galactic Core
IAU Updates Their Naming Policy
Bright Nova in Delphinus

We record the Weekly Space Hangout every Friday at 12 pm Pacific / 3 pm Eastern as a live Google+ Hangout on Air. Join us live on YouTube, or you can listen to the audio after the fact on the 365 Days of Astronomy Podcast.

Star’s Dying Gasp May Signal Black Hole’s Birth

Where is the Nearest Black Hole
Artist concept of matter swirling around a black hole. (NASA/Dana Berry/SkyWorks Digital)

A distinctive flash of light emanating from a dying star may make it possible for astronomers to watch a black hole being born, according to new research.

This burst of light, which might last three to 10 days, could be visible in optical light and also in infrared, which shows the heat signature of cosmic objects. While not as bright as a supernova — an exploding star — this signal could occur somewhere in the sky as often as once a year, according to simulations performed at the California Institute of Technology.

“That flash is going to be very bright, and it gives us the best chance for actually observing that this event occurred,” stated Caltech postdoctoral scholar Tony Piro, who led the research that is published in Astrophysical Journal Letters. “This is what you really want to look for.”

A big star essentially turns into a black hole when it falls into itself due to its large mass. The collapse shoots out protons and electrons from the core, creating neutrons and temporarily turning the core into a neutron star (a really, really dense object). This process also makes up neutrinos, which are infinitesimal but also extremely fast, moving nearly as fast as light does and bleeding the star of energy.

Combining observations done with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. The black hole blows a huge bubble of hot gas, 1,000 light-years across or twice as large and tens of times more powerful than the other such microquasars. The stellar black hole belongs to a binary system as pictured in this artist's impression.  Credit: ESO/L. Calçada
Combining observations done with ESO’s Very Large Telescope and NASA’s Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. The black hole blows a huge bubble of hot gas, 1,000 light-years across or twice as large and tens of times more powerful than the other such microquasars. The stellar black hole belongs to a binary system as pictured in this artist’s impression. Credit: ESO/L. Calçada

A 1980 paper, CalTech stated, showed that “this rapid loss of mass means that the gravitational strength of the dying star’s core would abruptly drop.” Hydrogen-filled layers at the top of the star would then fall outward and create a shock wave moving at more than two million miles an hour.

More recently, astronomers at the University of California, Santa Cruz discovered that the shock wave’s friction against the gas would heat up the plasma and make it glow, potentially for as long as a year. But that would be very faint from Earth-borne telescopes.

This is where the new CalTech research comes in. The university is already involved in black hole research, including the Nuclear Spectroscopic Telescope Array (NuSTAR). You can check out a video about NuSTAR below.

Piro’s simulations focus on when shock waves hit the surface of the star. It’s this process that would produce a burst of light, perhaps 10 to 100 times brighter than the other glow that astronomers foresaw.

The next step will be trying to observe these events as soon as they happen. Caltech advertised several survey possibilities related to its research: the Palomar Transient Factory, the  intermediate Palomar Transient Factory that started work in February and the even more advanced Zwicky Transient Facility (ZTF) that  is expected to start up in 2015.

Of course, it’s quite possible that other telescopes on the ground or orbit could work to confirm this signal.

Source: California Institute of Technology

Astronomers Watch as a Black Hole Eats a Rogue Planet

Screen capture from the ESA video.

In Star Wars, the Millennium Falcon narrowly escaped being devoured by an exogorth (space slug) slumbering inside an asteroid crater. An unsuspecting rogue giant planet wasn’t as lucky. Astronomers using the Integral space observatory were able to watch as the planet was eaten by a black hole that had been inactive for decades. It woke up just in time to make a meal out of the unwary planet.

“The observation was completely unexpected, from a galaxy that has been quiet for at least 20–30 years,” says Marek Nikolajuk of the University of Bialystok, Poland, lead author of the paper in Astronomy & Astrophysics.

Nikolajuk and his team added that the event is a preview of a similar feeding event that is expected to take place with the black hole at the center of our own Milky Way Galaxy.

The discovery in galaxy NGC 4845, 47 million light-years away, was made by Integral, with follow-up observations from ESA’s XMM-Newton, NASA’s Swift and Japan’s MAXI X-ray monitor on the International Space Station.

Astronomers were using Integral to study a different galaxy when they noticed a bright X-ray flare coming from another location in the same wide field-of-view. Using XMM-Newton, the origin was confirmed as NGC 4845, a galaxy never before detected at high energies.

Along with Swift and MAXI, the emission was traced from its maximum in January 2011, when the galaxy brightened by a factor of a thousand, and then as it subsided over the course of the year.

By analyzing the characteristics of the flare, the astronomers could determine that the emission came from a halo of material around the galaxy’s central black hole as it tore apart and fed on an object of 14–30 Jupiter masses, and so the astronomers say the object was either a super-Jupiter or a brown dwarf.

This object appears to have been ‘wandering,’ which would fit the description of recent studies that have suggested that free-floating planetary-mass objects of this kind may occur in large numbers in galaxies, ejected from their parent solar systems by gravitational interactions.

The black hole in the center of NGC 4845 is estimated to have a mass of around 300,000 times that of our own Sun. The astronomers said it also appears to enjoy playing with its food: the way the emission brightened and decayed shows there was a delay of 2–3 months between the object being disrupted and the heating of the debris in the vicinity of the black hole.

“This is the first time where we have seen the disruption of a substellar object by a black hole,” said co-author Roland Walter of the Observatory of Geneva, Switzerland. “We estimate that only its external layers were eaten by the black hole, amounting to about 10% of the object’s total mass, and that a denser core has been left orbiting the black hole.”

The flaring event in NGC 4845 might be similar to what is expected to happen with the supermassive black hole at the center of our own Milky Way Galaxy, perhaps even this year, when an approaching Earth-mass gas cloud is expected to meet its demise.

Along with the object seen being eaten by the black hole in NGC 4845, these events will tell astronomers more about what happens to the demise of different types of objects as they encounter black holes of varying sizes.

“Estimates are that events like these may be detectable every few years in galaxies around us, and if we spot them, Integral, along with other high-energy space observatories, will be able to watch them play out just as it did with NGC 4845,” said Christoph Winkler, ESA’s Integral project scientist.

The team’s paper: Tidal disruption of a super-Jupiter in NGC 4845

Source: ESA

Combining Light to Reveal Monster Black Holes

NGC 3627 glows in the combined light of Hubble, Chandra, Spitzer and the Very Large Telescope in this image. Astronomers conducted a survey of 62 galaxies, including NGC 3627 to study monster black holes at their centers.

It’s not just pretty, it’s science. Like a starry watercolor, astronomers combining light from Earth and space-based observatories found 37 new supermassive black hole candidates lurking in nearby galaxies.

Included in that survey is NGC 3627 pictured above. Astronomers combined X-ray data from NASA’s Chandra X-ray Observatory, infrared data from the Spitzer Space Telescope, and optical data from the Hubble Space Telescope and the Very Large Telescope. The other images give the galaxy context but it’s the ghostly blue images from Chandra that show super bright in the X-ray images; X-ray light powered by material falling into a monster black hole.

Gas and dust slowly spins around the black hole creating a flattened disk, or accretion disk. As material falls inward, it heats up and releases large amounts of energy that shine brightly in the ultraviolet region of the spectrum.

NGC 3627, located about 30 million light-years from Earth, was just one of a survey of 62 nearby galaxies using archived data from Chandra and data from the Spitzer Infrared Nearby Galaxy Survey. Of those, 37 galaxies contained bright X-ray sources, indicating active black holes at their cores. Scientists believe that seven of those sources are new supermassive black hole candidates.

The paper describing the survey results was published in the April 10, 2011 issue of The Astrophysical Journal.

Combining ultraviolet and infrared observations confirm previous Chandra results that found that there may be many more galaxies powered by monster black holes than believed previously through optical surveys. Scientists say in the paper that low-levels of black hole activity previously may have been hidden by dust or washed out by the bright light of the galaxy.

Image caption: Bright X-ray sources glow a ghostly blue in this image in NGC 3627 from NASA’s Chandra X-ray Observatory. A study confirms previous Chandra results that indicate that more galaxies powered by monster black holes populate the cosmos.

Source: Chandra X-ray Observatory website