For the child inside all of us space-enthusiasts, there might be nothing better than discovering a new type of explosion. (Except maybe bigger rockets.) And it looks like that’s what’s happened. Three objects discovered separately—one in 2016 and two in 2018—add up to a new type of supernova that astronomers are calling Fast Blue Optical Transients (FBOT).
Continue reading “A New Kind of Supernova Explosion has been Discovered: Fast Blue Optical Transients”High Energy Neutrinos Are Coming From Supermassive Black Holes
Neutrinos are mysterious and elusive particles. They have a tiny mass, no electric charge, and they interact with other matter only rarely. They are also extremely common. At any moment, about 100 billion neutrinos are streaming through every square centimeter of your body. Neutrinos were produced by the big bang, and are still being produced by everything from stars to supernovae.
Continue reading “High Energy Neutrinos Are Coming From Supermassive Black Holes”Closest Black Hole Found, Just 1,000 Light-Years From Earth
Black holes are invisible to the naked eye, have no locally detectable features, and even light can’t escape them. And yet, their influence on their surrounding environment makes them the perfect laboratory for testing physics under extreme conditions. In particular, they offer astronomers a chance to test Einstein’s Theory of General Relativity, which postulates that the curvature of space-time is altered by the presence of a gravity.
Thanks to a team of astronomers led by the European Southern Observatory (ESO), the closest black hole has just been found! Using the ESO’s La Silla Observatory in Chile, the team found this black hole in a triple system located just 1000 light-years from Earth in the Telescopium constellation. Known as HR 6819, this system can be seen with the naked eye and could one of many “quiet” black holes that are out there.
Continue reading “Closest Black Hole Found, Just 1,000 Light-Years From Earth”How were Supermassive Black Holes Already Forming and Releasing Powerful Jets Shortly After the Big Bang?
In the past few decades, astronomers have been able to look farther into the Universe (and also back in time), almost to the very beginnings of the Universe. In so doing, they’ve learned a great deal about some of the earliest galaxies in the Universe and their subsequent evolution. However, there are still some things that are still off-limits, like when galaxies with supermassive black holes (SMBHs) and massive jets first appeared.
According to recent studies from the International School for Advanced Studies (SISSA) and a team of astronomers from Japan and Taiwan provide new insight on how supermassive black holes began forming just 800 million years after the Big Bang, and relativistic jets less than 2 billion years after. These results are part of a growing case that shows how massive objects in our Universe formed sooner than we thought.
Continue reading “How were Supermassive Black Holes Already Forming and Releasing Powerful Jets Shortly After the Big Bang?”How Researchers Produce Sharp Images of a Black Hole
In April of 2019, the Event Horizon Telescope collaboration history made history when it released the first image of a black hole ever taken. This accomplishment was decades in the making and triggered an international media circus. The picture was the result of a technique known as interferometry, where observatories across the world combined light from their telescopes to create a composite image.
This image showed what astrophysicists have predicted for a long time, that extreme gravitational bending causes photons to fall in around the event horizon, contributing to the bright rings that surround them. Last week, on March 18th, a team of researchers from the Harvard-Smithsonian Center for Astrophysics (CfA) announced new research that shows how black hole images could reveal an intricate substructure within them.
Continue reading “How Researchers Produce Sharp Images of a Black Hole”The three-body problem shows us why we can’t accurately calculate the past
Our universe is driven by cause and effect. What happens now leads directly to what happens later. Because of this, many things in the universe are predictable. We can predict when a solar eclipse will occur, or how to launch a rocket that will take a spacecraft to Mars. This also works in reverse. By looking at events now, we can work backward to understand what happened before. We can, for example, look at the motion of galaxies today and know that the cosmos was once in the hot dense state we call the big bang.
Continue reading “The three-body problem shows us why we can’t accurately calculate the past”Even Though it Was Observing an Asteroid, OSIRIS-REx Accidentally Spotted a Black Hole
While the OSIRIS-REx spacecraft was orbiting asteroid Bennu, one of the instruments on board happened to catch a glimpse of a black hole ‘out of the corner of its eye,’ so to speak.
While intently focusing on the asteroid, the Regolith X-Ray Imaging Spectrometer (REXIS) happened to catch the X-rays from a newly flaring stellar mass black hole. While the flare occurred 30 thousand light years away, the flash in distant space was visible just off the limb of asteroid Bennu, in the edge of the instrument’s field of view.
Continue reading “Even Though it Was Observing an Asteroid, OSIRIS-REx Accidentally Spotted a Black Hole”14% of all the Massive Stars in the Universe are Destined to Collide as Black Holes
Einstein’s Theory of General Relativity predicted that black holes would form and eventually collide. It also predicted the creation of gravitational waves from the collision. But how often does this happen, and can we calculate how many stars this will happen to?
A new study from a physicist at Vanderbilt University sought to answer these questions.
Continue reading “14% of all the Massive Stars in the Universe are Destined to Collide as Black Holes”There’s a New Record for the Most Massive Black Hole Ever Seen: 40 Billion Solar Masses
Astronomers have spotted a 40 billion solar mass black hole in the Abell 85 cluster of galaxies. They found the behemoth using spectral observations with the Very Large Telescope (VLT.) There are only a few direct mass measurements for black holes, and at about 700 million light years from Earth, this is the most distant one.
Continue reading “There’s a New Record for the Most Massive Black Hole Ever Seen: 40 Billion Solar Masses”Astronomers Find a Galaxy Containing Three Supermassive Black Holes at the Center
NGC 6240 is a puzzle to astronomers. For a long time, astronomers thought the galaxy is a result of a merger between two galaxies, and that merger is evident in the galaxy’s form: It has an unsettled appearance, with two nuclei and extensions and loops.
Continue reading “Astronomers Find a Galaxy Containing Three Supermassive Black Holes at the Center”