Stars more massive than the Sun blow themselves to pieces at the end of their life. Usually leaving behind either a black hole, neutron star or pulsar they also scatter heavy elements across their host galaxy. One such star went supernova nearly 11,000 years ago creating the Vela Supernova Remnant. The resultant expanding cloud of debris covers almost 100 light years and would be twenty times the diameter of the full Moon. Astronomers have recently imaged the remnant with a 570 megapixel Dark Energy Camera (DECam) creating a stunning 1.3 gigapixel image.
Continue reading “This is a 1.3 Gigapixel Image of a Supernova Remnant”On its Hunt for Dark Energy, a Telescope Stopped to Look at the Lobster Nebula
If you thought dark matter was difficult to study, studying dark energy is even more challenging. Dark energy is perhaps the most subtle phenomenon in the universe. It drives the evolution of the cosmos, but its effects are only seen on intergalactic scales. So to study dark energy in detail, you need a great deal of observations of wide areas of the sky.
Continue reading “On its Hunt for Dark Energy, a Telescope Stopped to Look at the Lobster Nebula”Dark Energy Survey is out. 29 Papers Covering 226 Million Galaxies Across 7 Billion Light-Years of Space
Cosmology is now stranger to large scale surveys. The discipline prides itself on data collection, and when the data it is collecting is about galaxies that are billions of years old its easy to see why more data would be better. Now, with a flurry of 29 new papers, the partial results from the largest cosmological survey ever – the Dark Energy Survey (DES) – have been released. And it largely confirms what we already knew.
Continue reading “Dark Energy Survey is out. 29 Papers Covering 226 Million Galaxies Across 7 Billion Light-Years of Space”First Images in a New Hunt for Dark Energy
Zoomed-in image from the Dark Energy Camera of the barred spiral galaxy NGC 1365, about 60 million light-years from Earth. (Dark Energy Survey Collaboration)
The ongoing search for dark energy now has a new set of eyes: the Dark Energy Camera, mounted on the 4-meter Victor M. Blanco telescope at the National Science Foundation’s Cerro Tololo Inter-American Observatory in Chile. The culmination of eight years of planning and engineering, the phone-booth-sized 570-megapixel Dark Energy Camera has now gathered its very first images, capturing light from cosmic structures tens of millions of light-years away.
Eventually the program’s survey will help astronomers uncover the secrets of dark energy — the enigmatic force suspected to be behind the ongoing and curiously accelerating expansion of the Universe.
Zoomed-in image from the Dark Energy Camera of the Fornax cluster
“The Dark Energy Survey will help us understand why the expansion of the universe is accelerating, rather than slowing due to gravity,” said Brenna Flaugher, project manager and scientist at Fermilab.
Read more: Polar Telescope Casts New Light on Dark Energy
The most powerful instrument of its kind, the Dark Energy Camera will be used to create highly-detailed color images of a full 1/8th of the night sky — about 5,000 square degrees — surveying thousands of supernovae, galactic clusters and literally hundreds of millions of galaxies, peering as far away as 8 billion light-years.
The survey will attempt to measure the effects of dark energy on large-scale cosmic structures, as well as identify its gravitational lensing effects on light from distant galaxies. The images seen here, acquired on September 12, 2012, are just the beginning… the Dark Energy Survey is expected to begin actual scientific investigations this December.
Full Dark Energy Camera composite image of the Small Magellanic Cloud
“The achievement of first light through the Dark Energy Camera begins a significant new era in our exploration of the cosmic frontier,” said James Siegrist, associate director of science for high energy physics with the U.S. Department of Energy. “The results of this survey will bring us closer to understanding the mystery of dark energy, and what it means for the universe.”
Read more on the Symmetry Magazine article here, and you can also follow the Dark Energy Survey on Facebook here. (The Fermilab press release can be found here.)
Images: Dark Energy Survey Collaboration. Inset image: the 4-meter Blanco Telescope dome at CTIO (NOAO)
The Dark Energy Survey is supported by funding from the U.S. Department of Energy; the National Science Foundation; funding agencies in the United Kingdom, Spain, Brazil, Germany and Switzerland; and the participating DES institutions.