Yes, it’s another time-lapse of the October 8 lunar eclipse that was observed by skywatchers across half the Earth… except that these images weren’t captured from Earth at all; this was the view from Mercury!
The animation above was constructed from 31 images taken two minutes apart by the MESSENGER spacecraft between 5:18 a.m. and 6:18 a.m. EDT on Oct. 8, 2014.
“From Mercury, the Earth and Moon normally appear as if they were two very bright stars,” said Hari Nair, a planetary scientist at the Johns Hopkins University Applied Physics Laboratory, which developed and operates the MESSENGER mission for NASA. “During a lunar eclipse, the Moon seems to disappear during its passage through the Earth’s shadow, as shown in the movie.”
According to Nair the images have been zoomed by a factor of two and the Moon’s brightness has been increased by a factor of about 25 to enhance visibility. Captured by MESSENGER’s narrow-angle camera, Earth and the Moon were 0.713 AU (106.6 million km / 66.2 million miles) away from Mercury when the images were acquired.
Want to see some great photos of the eclipse shared by talented photographers around the world? Click here.
The Oct. 8 “Hunter’s Moon” eclipse was the second and last total lunar eclipse of 2014. The next will occur on April 4 of next year… but by that time MESSENGER won’t be around to witness it.
Launched August 3, 2004, MESSENGER entered orbit at Mercury on March 18, 2011. It is currently nearing the end of its missions as well as its its operational life, but we still have several more months of observations to look forward to from around the Solar System’s innermost planet before MESSENGER makes its final pass and ultimately impacts Mercury’s surface in March 2015.
Video credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Did you see it? On October 8, 2014, early risers in North and South America, east Asia, Australia and the Pacific saw unique and rare views of the Hunter’s Moon as was eclipsed by Earth’s shadow. We’ve got so many great pictures to share from our Flickr group and from social media! In some shots, the fully eclipsed Moon glows with a coppery red hue, and in others the partially eclipsed Moon appears to have a bite taken out of its bright surface. Some images pair the Moon with a faint planet Uranus.
This is the second and final total lunar eclipse of 2014, and the second of four in a quartet series of lunar eclipses known as a tetrad — a series of 4 consecutive total eclipses occurring at approximately six month intervals. The next total eclipse will be on April 4, 2015, with another occurring on Sept. 28, 2015.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
October 2014 means eclipse season 2 of 2 for the year is upon us.
Don’t fear the ‘Blood Moon’ that’s currently infecting the web, but if you find yourself on the correct moonward facing hemisphere of the planet, do get out and observe the total lunar eclipse coming right up on the morning of Wednesday, October 8th. This is the second and final total lunar eclipse of 2014, and the second of four in a quartet series of lunar eclipses known as a tetrad.
And the good news is, the eclipse once again favors nearly all of North America. From the western U.S. and Canada, the Moon will be high in the western skies when partial phases begin early in the morning on October 8th. The western U.S., Canada and Alaska will see the entire 61 minute span of totality, just 18 minutes shorter than last April’s lunar eclipse. The Moon will be high in the sky during totality for the Hawaiian Islands, and viewers in Australia and the Pacific Far East will witness the eclipse in the evening hours.
This lunar eclipse is part of saros 127, and marks number 42 of a series of 72 for that particular saros. If you witnessed the total lunar eclipse visible from North America and Europe on September 27th, 1996, you caught the last of the series, and if you catch the next eclipse in the saros on October 18th, 2032, you’ve earned a veteran lunar eclipse-watchers badge of seeing an exeligmos, or “triple saros” of eclipses.
Timings for key phases of the eclipse are as follows:
Not all total lunar eclipses are the same when it comes to color. Totality can appear anywhere from a dark brick color, as happened during the December 9th, 1992, eclipse following the eruption of Mount Pinatubo, when the Moon nearly disappeared during totality, to a bright coppery red, as seen during the April eclipse earlier this year. The Moon passes to the north of the dark central core of the Earth’ shadow next Wednesday, so expect a brighter than normal eclipse, especially along the Moon’s northeast limb. Grab a painter’s wheel and compare the eclipsed Moon to swatches of orange through red: what colors do you see? What you’re seeing is the combinations of all the world’s sunsets refracted into the cone of the Earth’s shadow, which is about three times the size of the Moon at its average distance as seen from Earth. Remember, the Moon is experiencing a total solar eclipse as we watch the lunar eclipse unfold!
This color can be quantified and described on what is known as the Danjon Scale, with 0 being a very dark eclipse with the Moon barely visible, to a 4, meaning a very bright eclipse.
And yes, each total lunar eclipse is now receiving the “Blood Moon” meme thanks to ye ole Internet. Expect the conspiracy-minded to note that this eclipse occurs on the Jewish holiday of Sukkot starting at sundown on the 8th, which isn’t really all that wondrous as the Jewish calendar is a luni-solar one, and total lunar eclipses have to occur during a Full Moon by definition. Wait long enough, and an occasional “Sukkot total lunar eclipse” does indeed occur.
But a truly rare event does occur during this eclipse, as the Moon actually occults (passes in front of) the planet Uranus during totality for observers in northern Alaska and northeast Asia. The rest of us in the observing zone will see a near miss. Can you spy Uranus with binoculars near the lunar limb during totality? Another such rarity occurred during Shakespeare’s time on December 30th, 1591, involving Saturn and the eclipsed Moon, and another such odd occurrence transpires in 2344 A.D.
The brightest star to be occulted by the total eclipsed Moon as it crosses the constellation Pisces is +7.9th magnitude HIP 4231 for the northern U.S. and Canada.
And speaking of historical eclipses, there’s a Columbus Day tie-in with the phenomenon as well. Like many mariners of his day, Columbus was well-versed in celestial navigation, and used a total lunar eclipse to get a good one-time fix on his longitude at sea, an experiment that you can easily replicate. Columbus also wasn’t above using prior knowledge of an impending lunar eclipse to get himself and his crew out of a bind with the locals when the need arose.
Photographing an eclipse with a DSLR is as easy as shooting an image of the Moon. Try this a few evenings before the big event. A minimum focal length of 200mm is needed to render the Moon larger than a white dot in the image, and remember that the Moon is much darker during total eclipse, and you’ll need to step the exposure times rapidly down from 1/100th of a second to 2 to 4 seconds during totality.
A long-running effort by Sky & Telescope has been looking for amateur observations of precise crater contacts along the rim of the umbra in an effort to measure variations in the diameter of the Earth’s shadow.
As always, weather prospects are the big question mark when it comes to eclipses. Typically, the southwestern U.S. experiences 13-20 clear days in the month of October; prospects worsen to the northwest, with an average of 3-12 days. We’ll be looking at resources such as NOAA, Skippy Sky and ClearSkyChart on the evenings leading up to the 8th. The great thing about a lunar eclipse is, you don’t need a 100% clear sky to see it: just a clear view of the Moon!
Up for a challenge? We’ve yet to see a capture of a shadow transit of the International Space Station in front of the eclipsed Moon. This time around, such a capture should be possible across southern coastal California and the Baja peninsula just minutes prior to the onset of totality.
Another bizarre catch, known as a selenelion — witnessing the end of lunar totality after sunrise — may just be possible across the northeastern U.S. into the Canadian Maritimes as the eclipsed Moon sets during totality. The more elevation you can get the better! This works because the Moon lingers a bit in the large shadow of the Earth, plus atmospheric refraction gives the low altitude Sun and Moon a slight boost.
Clouded out? On the wrong side of the planet? You can watch the eclipse online at the following links:
– Live views courtesy of Gialuca Masi and the Virtual Telescope starting at 10:00 UT on October 8th.
– A live webcast starting at 9:00 UT courtesy of Slooh:
– A Columbia State University broadcast, (time to be determined).
Planning an ad-hoc broadcast? Let us know!
And as the eclipse wraps up, the biggest question is always: When’s the next one? Well, lunar eclipse number three of the four eclipse tetrad occurs next year on April 4th, 2015… but in just two weeks time, the western United States and Canada will also witness a fine partial solar eclipse on Oct 23rd…
Stay tuned!
Got images of the total lunar eclipse? Send ‘em in to Universe Today’s Flickr forum!
Interested in eclipse sci-fi? Check out our latest short stories Exeligmos and Shadowfall.
This timelapse of the lunar eclipse that took place April 15, 2014 will have you checking over your shoulder for aliens! Photographer Andrew Walker shot this footage at the Caltech’s CARMA Array (Combined Array for Research in Millimeter-wave Astronomy) in the Inyo Mountains of California. You can find out more about his impressive equipment details here, but the very fitting music you may be familiar with: it’s from the movie “2001: A Space Odyssey.” Continue reading “Dramatic Timelapse of the Recent “Blood Moon” Eclipse”
Did the Moon appear a little on crimson side to you last night? It’s not your imagination, but it was a fine textbook example of a total lunar eclipse. This was the first total lunar eclipse visible from the Earth since late 2011, and the first of four visible from the Americas over the next 18 months.
And although much of the U.S. and Canadian eastern seaboard was under cloud cover, those west of the Mississippi River were treated to a fine show. We were the lucky exception here at Astroguyz HQ just north of Tampa Bay in Florida, as the storm front held off juuusst long enough to witness the eclipse in its entirety.
We will admit, though, that there were some tense moments. A wave of thick clouds threatened to end our session altogether just moments before the onset of totality before finally abating. We shot stills, streamed video, made observations, and heck, just stepped back once in a while to stare at the ruby-tinged beauty that was totality.
And judging from the flurry of web traffic, the odd late Monday night/ early Tuesday morning timing for this eclipse did little to stem folks interest. We noted to Virtual Star Party co-host that the excitement was reminiscent to the early morning landing of Curiosity on the Red Planet.
Anyhow, here’s just a sampling of some of the great pics currently pouring in to Universe Today:
Visually, we’d place this morning’s eclipse between a Danjon value of 3 and 4, with a bright yellowish rim contrasting with a dark, coppery core near the center of the umbra. One astute viewer noted during the webcast that the eclipsed Moon took on a decidedly 3-D appearance, versus its usual flat look when nearing Full.
And speaking of Mars, we fielded lots of “what are those bright stars nearby?” questions as well. The bright blue-white star Spica and the planet Mars “photobombed” many eclipse images. Spica just missed being occulted by the Moon during the eclipse by less than two degrees, And Mars just passed opposition this week and was at its closest approach to the Earth for 2014 on the night of the eclipse.
As totality approached, shutter-speeds became longer as the red edge of the Moon became apparent. It always amazes me to think that the Earth casts that long red shadow back into the void of space every night, but its only during a lunar eclipse that you actually get to see it. We’re always told that the Earth is round, but during a lunar eclipse is one of the only times that you can really witness this curve, up close and personal.
This eclipse was placed reasonably high in the sky for Northern hemisphere viewers, though that also meant a lack of pics with foreground, except of course for creative shots like the one above. And with the explosion of digital imaging technology, its amazing what folks are doing to image eclipses, even using mobile phones:
We’ve come a long way since the days of film and doing back of the envelope calculations for afocal SLR photography of the Moon, that’s for sure. Unlike solar totality, lunar eclipses are a long at stately affair. In fact, totality during this eclipse lasted for one hour and 18 minutes, about 29 minutes short of the theoretical maximum. This morning’s eclipse won’t be topped in length until 2018.
This also marked our first attempts at adventures in live-streaming an eclipse both on UStream and G+, which was a blast. Thanks to co-hosts and saros chasers Scott Lewis, Fraser Cain, Thad Szabo and Katie Mack (@AstroKatie) for making the broadcast a success!
As of yet, there’s no images of the eclipse from space-based assets, though some may surface. Universe Today’s Elizabeth Howell noted that NASA engineers took precautions to protect the Lunar Reconnaissance Orbiter during the event: an extended lack of sunlight is a bad thing for solar-powered spacecraft. As of yet, there’s no word as to how the LADEE spacecraft also in orbit around the Moon fared, though its due to complete its mission and crash into the Moon this month.
And like the “Blue,” “Super” and “Mini” Moon, the Blood Moon meme is now — for better or worse — here to stay. We’ve already fielded multiple queries for media sources asking if the current tetrad of eclipses has any special significance, and the answer is no; I would still file your taxes on this April the 15th. Eclipses happen, as do wars, earthquakes and lost car keys… each and every year.
Want more? There’s no word yet as to if anyone caught any of the more bizarre challenges during this eclipse, such as completing a triple saros exeligmos, catching an ISS transit, spotting a selenelion or catching a stellar occultation during the eclipse. If you did any of the above, let us know!
And finally, the biggest post-eclipse question on everyone’s mind is always: when’s the next one? Well, Australians only have to wait two weeks until a partial solar eclipse graces their continent on April 29th… and the next total lunar eclipse once again favors North America and the Pacific region on October 8th, 2014.
T’was a great kickoff this morning of eclipse season 1 of 2 for 2014!
Are you ready for some eclipse action? We’re now within 24 hours of the Moon reaching its ascending node along the ecliptic at 13:25 Universal Time (UT)/ 9:25 AM EDT on Tuesday morning and meeting the shadow of the Earth just over seven hours earlier.
We’ve written about viewing prospects for tonight’s lunar eclipse. This eclipse is the first total lunar eclipse since December 10th, 2011 and is the first in a series of four — known as an eclipse tetrad — visible from North America in 2014 and 2015. Totality lasts 1 hour and 18 minutes and falls just 29 minutes short of the theoretical maximum, which was last neared on January 21st, 2000 and won’t be topped until July 27th, 2018.
This will be an early morning event for U.S. East Coasters spanning 2:00 to 5:30 AM local (from the start of the partial umbral phases and totality), and a midnight spanning-event for the Pacific coast starting at 11:00 PM Monday night until 2:30 AM Tuesday morning on the 15th.
And as always with celestial events, the chief question on every observer’s mind is: will the skies be clear come show time? Should I stay put, or ponder going mobile?
When it comes to astronomical observing, a majority a mainstream weather resources only tell part of the story, often only listing cloud cover and precipitation percentages. Seeing, transparency, and low versus middle and high cloud decks can often mean the difference between a successful observing session and deciding to pack it in and watch Cosmos reruns online. But the good news is, you don’t need crystal clear skies to observe a total lunar eclipse, just a view of the Moon, which can easily “burn through” a high cirrus cloud deck. We’re going to share a few sites that are essential tools for planning an observing session and what they say about the prospects for seeing tonight’s eclipse.
Now the bad news: things aren’t looking good for eastern North America. In fact, the dividing line between “cloudy” and “clear” runs right down through central Ontario and follows the Mississippi River at mid-eclipse, which occurs at 7:47 UT/3:47 AM EDT. There’s a high pressure front sweeping eastward, bringing rain and cloudy skies with it. The Florida peninsula and parts of New England and the Canadian Maritimes may have shots at viewing the eclipse through partly cloudy skies.
The National Oceanic and Atmospheric Administration maintains a great interactive site with graphical interactive forecasts, to include satellite maps. Another long-standing source of good info is the Weather Underground. For tailor-made astronomy forecasts, we’re checking Clear Sky Chart (formerly Clear Sky Clock) and SkippySky daily for upcoming prospects. A great feature in SkippySky is that it not only gives you cloud cover maps, but layers them with high versus middle and low clouds… again, a thin high cloud deck during the lunar eclipse could still mean game on!
Clouded out? There’s a half dozen webcasts planned for tonight’s lunar eclipse as well.
Dependable Slooh will have a live broadcast with commentary on the eclipse starting at 2AM EDT/6:00 UT:
Also, our good friends at the Virtual Telescope Project will be covering the lunar eclipse as part of their ongoing Global Astronomy Month campaign and will utilize several North American observers to cover the event:
NASA is also planning a broadcast out of the Marshall Space Flight Center of the eclipse along with a discussion on Reddit with NASA planetary scientist Renee Weber also starting at 2:00 AM EDT:
And finally, we hope to launch our very own initiation into the world of eclipse webcasting with an hour-long broadcast of the crucial phase transition from partial to total eclipse starting at 2:30 AM EDT/6:30 UT, weather willing:
And hey, word is that doomsday purveyor John Hagee is planning a broadcast of a more “End of the World” bent tonight as well. We didn’t know he was an astronomy fan…
Prospects call for a brighter than normal eclipse, as atmospheric sciences professor at the University of Colorado Richard Keen notes that the Earth’s stratosphere is currently relatively clear of dust and volcanic ash. Still, we’ve been surprised before. The darkness and color of the eclipsed Moon is expressed on what’s known as the Danjon scale. As during eclipses previous, we’ll be data-mining Twitter for estimates and averages to see how they stack up… tweet those observations to #DanjonNumber.
We also ran the possibilities for catching a shadow transit of the International Space Station in front of the eclipsed Moon for North American observers. To our knowledge, this has never been done before. Live near one of the two paths depicted above? You may be the first to accomplish this unusual feat. Check in with CALSky for specifics.
Finally, ever wonder when the next eclipse will occur during the Sunday night Virtual Star Party? If you’re like us, you consider and ponder such astronomical occurrences… and it turns out, the very last lunar eclipse in the current tetrad next year on September 28th, 2015 does just that. And stick around until July 13th, 2037 and we’ll have the first ever total solar eclipse occurring during the show… we just need someone in Australia to stream it!
Tonight’s eclipse is number 56 of saros 122. Reader Rob Sparks notes that the last eclipse (55) in this series occurred on April 4th 1996 and also hosted an extra-special celestial treat, as Comet Hyakutake was just beginning to put on its memorable performance.
In short, don’t fear the “Blood Moon,” but do get out and catch tonight’s fine lunar eclipse… we’ll be doing a post-eclipse photo roundup tomorrow, so be sure to send those pics in to Universe Today!
By now, you may have already heard the latest tale of gloom and doom surrounding the upcoming series of lunar eclipses.
This latest “End of the World of the Week” comes to us in what’s being termed as a “Blood Moon,” and it’s an internet meme that’s elicited enough questions from friends, family and random people on Twitter that it merits addressing from an astronomical perspective.
Like the hysteria surrounding the supposed Mayan prophecy back in 2012 and Comet ISON last year, the purveyors of Blood Moon lunacy offer a pretty mixed and often contradictory bag when it comes down to actually what will occur.
But just like during the Mayan apocalypse nonsense, you didn’t have to tally up just how many Piktuns are in a Baktun to smell a rat. December 21st 2012 came and went, the galactic core roughly aligned with the solstice — just like it does every year — and the end of the world types slithered back into their holes to look for something else produce more dubious YouTube videos about.
Here’s the gist of what’s got some folks wound up about the upcoming cycle of eclipses. The April 15th total lunar eclipse is the first in series of four total eclipses spanning back-to-back years, known as a tetrad. There are eight tetrads in the 21st century: if you observed the set total lunar eclipses back in 2003 and 2004, you saw the first tetrad of the 21st century.
The eclipses in this particular tetrad, however, coincide with the Full Moon marking Passover on April 15th and April 4th and the Jewish observance of Sukkot on October 8th and September 28th. Many then go on to cite the cryptic biblical verse from Revelation 6:12, which states;
“I watched as he opened the sixth seal. There was a great earthquake. The Sun turned black like sackcloth made of goat hair. The whole Moon turned blood red.”
Whoa, some scary allegory, indeed… but does this mean the end of the world is nigh?
I wouldn’t charge that credit card through the roof just yet.
First off, looking at the eclipse tetrads for the 21st century, we see that they’re not really all that rare:
21st century eclipse tetrads:
Eclipse #1
Eclipse #2
Eclipse #3
Eclipse #4
May 16th, 2003
November 9th, 2003
May 4th , 2004
October 28th, 2004
April 15th, 2014*+
October 8th, 2014
April 4th, 2015*+
September 28th, 2015
April 25th, 2032
October 18th, 2032
April 14th, 2033*+
October 8th, 2033
March 25th, 2043*
September 19th, 2043
March 13th, 2044
September 7th, 2044
May 6th, 2050
October 30th, 2050
April 26th, 2051
October 19th, 2051
April 4th, 2061*+
September 29th, 2061
March 25th, 2062*
September 18th, 2062
March 4th, 2072
August 28th, 2072
February 22nd, 2073
August 17th, 2073
March 15th, 2090
September 8th, 2090
March 5th, 2091
August 29th, 2091
*Paschal Full Moon
+Eclipse coincides with Passover
Furthermore, Passover is always marked by a Full Moon, and a lunar eclipse always coincides with a Full Moon by definition, meaning it cannot occur at any other phase. The Jewish calendar is a luni-solar based calendar that attempts to mark the passage of astronomical time via the apparent course that the Sun and the Moon tracks through the sky. The Muslim calendar is an example of a strictly lunar calendar, and our western Gregorian calendar is an example of a straight up solar one. The Full Moon marking Passover often, though not always, coincides with the Paschal Moon heralding Easter. And for that matter, Passover actually starts at sunset the evening prior in 2014 on April 14th. Easter is reckoned as the Sunday after the Full Moon falling after March 21st which is the date the Catholic Church fixes as the vernal equinox, though in this current decade, it falls on March 20th. Easter can therefore fall anywhere from March 22nd to April 25th, and in 2014 falls on the late-ish side, on April 20th.
To achieve synchrony, the Jewish calendar must add what’s known as embolismic or intercalculary months (a second month of Adar) every few years, which in fact it did just last month. Eclipses happen, and sometimes they occur on Passover. It’s rare that they pop up on tetrad cycles, yes, but it’s at best a mathematical curiosity that is a result of our attempt to keep our various calendrical systems in sync with the heavens. It’s interesting to check out the tally of total eclipses versus tetrads over a two millennium span:
Century
Number of Total Lunar Eclipses
Number of Tetrads
Century
Number of Total Lunar Eclipses
Number of Tetrads
11th
62
0
21st
85
8
12th
59
0
22nd
69
4
13th
60
0
23rd
61
0
14th
77
6
24th
60
0
15th
83
4
25th
69
4
16th
77
6
26th
87
8
17th
61
0
27th
79
7
18th
60
0
28th
64
0
19th
62
0
29th
57
0
20th
81
5
30th
63
1
Note that over a five millennium span from 1999 BC to 3000 AD, the max number of eclipse tetrads that any century can have is 8, which occurs this century and last happened in the 9th century AD.
Of course, the visual appearance of a “Blood of the Moon” that’s possibly alluded to in Revelation is a real phenomena that you can see next week from North and South America as the Moon enters into the dark umbra or core of the shadow of the Earth. But this occurs during every total lunar eclipse, and the redness of the Moon is simply due to the scattering of sunlight through the Earth’s atmosphere. Incidentally, this redness can vary considerably due to the amount of dust, ash, and particulate aerosols aloft in the Earth’s atmosphere, resulting in anything from a bright cherry red eclipse during totality to an eclipsed Moon almost disappearing from view altogether… but it’s well understood by science and not at all supernatural.
Curiously, the Revelation passage could be read to mean a total solar eclipse as well, though both can never happen on the same day. Lunar and solar eclipses occur in pairs two weeks apart at Full and New Moon phases when the nodes of the Moon’s ecliptic crossing comes into alignment with the Sun — known as a syzygy, an ultimate triple word score in Scrabble, by the way — and this eclipse season sees a non-central annular eclipse following the April 15th eclipse on April 29th.
And yes, earthquakes, wars, disease, relationship breakups and lost car keys are on tap to occur in 2014 and 2015… just like during any other year. Lunar eclipses marked the fall of Constantinople in 1453 and the World Series victory of the Red Sox in 2004, but they’re far from rare. We humans love to see patterns, and sometimes this habit works against us, making us see them where none exists. This is simply a case of the gambler’s fallacy, counting the hits at the cost of the misses. We could just as easily make a case that the upcoming eclipse tetrad of April 15th, October 8th, April 4th and September 28th marks US Tax Day, Croatian Independence Day, The Feast of Benedict of the Moor & — Michael Scott take note — International World Rabies Day… perhaps the final 2015 eclipse should be known as a “Rabies Moon?”
So, what’s the harm in believing in a little gloom and doom? The harm in believing the world ends tomorrow comes when we fail to plan for still being here the day after. The harm comes when something like the Heavens Gate mass suicide goes down. We are indeed linked to the universe, but not in the mundane and trivial way that astrologers and doomsdayers would have you believe. Science shows us where we came from and where we might be headed. We’ve already fielded queries from folks asking if it’s safe (!) to stare at the Blood Moon during the eclipse, and the answer is yes… don’t give in to superstition and miss out on this spectacular show of nature because of some internet nonsense.
The upcoming lunar eclipse next week won’t mean the end of the world for anyone, except, perhaps, NASA’s LADEE spacecraft… be sure not to miss it!
April the 15th: In the United States, it’s a date dreaded by many, as the date to file taxes – or beg for an extension – looms large. But this year, Tax Day gives lovers of the sky something to look forward to, as the first of four total lunar eclipses for 2014 and 2015 occurs on the night of April 14th/15th favoring North and South America.
This marks the first total lunar eclipse visible from since December 10th 2011, which was visible at moonset from North America, and marks the start of the first of two eclipse seasons for 2014. Totality will last 1 hour, 17 minutes and 48 seconds, and will be visible in its entirety from the central Atlantic westward to eastern Australia. Unlike a total solar eclipse, which occurs along a narrow track, a total lunar eclipse can be viewed by the entire moonward facing hemisphere of the Earth.
The action begins at 4:37 Universal Time (UT)/12:37 AM EDT, when the Moon enters the western edge of the Earth’s shadow known as the penumbra. The Moon will be completely immersed in the penumbra by 5:58 UT/1:58 AM EDT, but don’t expect to see anything more than a faint tan shading that’s slightly darker on the Moon’s northeastern edge.
The real action begins moments later, as the Moon encounters the ragged edge of the umbra, or the inner core of the Earth’s shadow. When does the umbra first become apparent to you? Totality then begins at 7:06 UT/3:06 AM EDT and lasts until 8:24 UT/4:24 AM EDT, with mid-eclipse occurring just south of the center of the Earth’s shadow at 7:46 UT/3:46 AM EDT.
Finally, the eclipse ends as the Moon slides out of the penumbra at 10:37 UT/ 6:37 AM EDT. Michael Zeiler (@EclipseMaps) has complied a fine video guide to the eclipse:
This eclipse is also notable for being part of a series of four lunar eclipses in 2014 & 2015, known as a “tetrad.” NASA eclipse expert Fred Espenak notes that this series of eclipses is also notable in that all four are visible in part or in their entirety from the United States. We’re in a cycle of 9 sets of tetrads for the 21st century, which began with the first set in 2003. Before that, you have to go all the way back to the 16th century for the last set of eclipse tetrads!
For saros buffs, the April 15th eclipse is Member 56 of 75 of saros 122, which began on August 14th 1022 A.D. and runs out until a final penumbral eclipse of the series on October 29th, 2338. There are only two total eclipses left in this particular saros, one in 2032 and 2050. If you caught the total lunar eclipse of April 4th, 1996, you saw the last lunar eclipse in this same saros series.
Lunar eclipses have turned up at some curious junctures in history. For example, a lunar eclipse preceded the fall of Constantinople in 1453. A 2004 lunar eclipse also fell on the night that the Red Sox won the World Series after an 86 year losing streak, though of course, lunar eclipses kept on occurring during those losing years as well. Christopher Columbus was known to evoke an eclipse on occasion to get him and his crew out of a jam, and also attempted to use a lunar eclipse to gauge his position at sea using a method first described by Ptolemy while studying the lunar eclipse of September 20th, 331 B.C.
A handful of stars in the +8th to +12th magnitude range will be occulted by the eclipsed Moon as well. Brad Timerson of the International Occultation Timing Association (IOTA) has put together a list, along with graze line prospects across the United States. The brightest star to be occulted by the eclipsed Moon is +5th magnitude 76 Virginis across western South America and Hawaii:
Note that the bright star Spica will be only just over a degree from the eclipsed Moon, and Mars will also be nearby, just a week past its 2014 opposition. And to top it off, Saturn is just one constellation to the east in Libra!
During the partial phases of the eclipse, watch for the Moon to take on a “Pacman-like” appearance. The Earth’s umbra is just under three times the size of the Moon, and the Greek astronomer Aristarchus of Samos used this fact and a little geometry to gauge the distance to our natural satellite in the 3rd century B.C.
As totality approaches, expect the innermost rim of the Moon to take on a ruddy hue. This is the famous “combination of all the sunrises and sunsets” currently underway worldwide as light is bent through the Earth’s atmosphere into its shadow. It’s happening every night, and during the totality of a lunar eclipse is the only chance that we get to see it.
You don’t need anything more sophisticated than the naked eye or “Mark 1 eyeball” to enjoy a lunar eclipse, though it’s fun to watch through binoculars or a low-power telescope field of view. One interesting project that has been ongoing is to conduct timings for the moment when the umbra contacts various craters on the Moon. It’s a curious mystery that the Earth’s shadow varies by a small (1%) but perceptible amount from one eclipse to the next, and efforts by amateur observers may go a long way towards solving this riddle.
Said color of the fully eclipsed Moon can vary considerably as well: the Danjon scale describes the appearance of the eclipsed Moon, from bright and coppery red (Danjon 4) to so dark as to almost be invisible (Danjon 0). This is a product of the amount of dust, volcanic ash and aerosols currently aloft in the Earth’s atmosphere. During the lunar eclipse of December 9th, 1992 the Moon nearly disappeared all together, due largely to the eruption of Mount Pinatubo the year prior.
A lunar eclipse also presents a chance to nab what’s known as a Selenelion. This occurs when the Sun and the totally eclipsed Moon appear above the local horizon at the same time. This is possible mainly because the Earth’s shadow is larger than the Moon, allowing it to linger a bit inside the umbra after sunrise or before sunset. Gaining some altitude is key to making this unusual observation. During the April 15th eclipse, selenelion sightings favor the Mid-Atlantic and Greenland where totality is underway at sunrise and eastern Australia, where the reverse is true at sunset.
Want to have a go at measuring the brightness or magnitude of the eclipsed Moon? Here’s a bizarre but fun way to do it: take a pair of binoculars and compare the pinpoint Moon during totality to the magnitude of a known star, such as Antares or Spica.
Note that to do this, you’ll first need to gauge the magnitude extinction of your particular binoculars: NASA’s got a table for that, or you could field test the method days prior on Venus, currently shining at a brilliant -4.2 in the dawn. Hey, what’s a $1,000 pair of image-stabilized binocs for?
And of course, weather prospects are the big question mark for the event. Mid-April weather for North America is notoriously fickle. We’ll be watching the Clear Sky Chart and Skippy Sky for prospects days before the eclipse.
Photography during an eclipse is fun and easy to do, and you’ll have the waxing gibbous Moon available to practice on days prior to event. Keep in mind, you’ll need to slow down those shutter speeds as the Moon enters into totality, we’re talking going down from 1/60th of a second down to ¼” pretty quickly. In the event of a truly dark eclipse, the Moon may vanish in the view finder all together. Don’t be afraid to step exposures up to the 1 to 4 second range in this instance, as you’ve got over an hour to experiment.
Thus far, only one webcast for the eclipse has surfaced, courtesy of the venerable Slooh. We’ll most likely be doing a follow up roundup of eclipse webcasts as they present themselves, as well as a look at prospects for things like a transit of the ISS in front of the eclipsed Moon and weather forecasts closer to show time.
And speaking of spacecraft, China’s Chang’e 3 lander and Yutu rover will have a fine view of a solar eclipse overhead from their Mare Imbrium vantage point, as will NASA’s LRO and LADEE orbiters overhead. In fact, NASA hinted last year that the April 15th eclipse might spell the end of LADEE entirely…
And thus marks the start of eclipse season one of two for 2014. Next up will be a curious non-central annular solar eclipse over Antarctica on April 29th, followed by another total lunar eclipse on October 8th, and a fourth and final partial solar eclipse of the year for North America of October 23rd.
Watch this space and follow us on Twitter as @Astroguyz, as we’ll be “all eclipses, all the time,” for April… no new taxes guaranteed!
Next up: Heard the one about the Blood Moon? Yeah, us too… join us as we debunk the latest lunacy surrounding the eclipse tetrad!
– Got pics of the lunar eclipse? Send ‘em in to Universe Today, as a post-eclipse photo round up is a very real possibility!
A blood moon is the first full moon after a harvest moon, which is the full moon closest to the fall equinox. Another name for a blood moon is a hunter’s moon.
Before the advent of electricity, farmers used the light of the full moons to get work done. The harvest moon was a time they could dedicate to bringing in their fall harvest. And so a month later is the blood moon, or the hunter’s moon. This was a good time for hunters to shoot migrating birds in Europe, or track prey at night to stockpile food for Winter.
A full moon occurs every 29.5 days, so a blood moon occurs about a month after the harvest moon. A blood moon is just a regular full moon. It doesn’t appear any brighter or redder than any other full moon. The distance between the Earth and the Moon can change over the course of the month. When the moon is at its closest, a full moon can appear 10% larger and 30% brighter than when it’s further away from the Earth.
A blood moon will actually turn red when it matches up with a lunar eclipse. These occur about twice a year, so blood moons match up with lunar eclipses about every 6 years or so. At the time of this writing, the next blood moon lunar eclipse will be in 2015.