Super Secret X-37B Nears One Year In Orbit Doing ???

The X-37B Orbital Test Vehicle taxiing on the flightline on March 30th, 2010, at the Astrotech facility in Titusville, Florida. Credit: USAF

For years now, the program to develop the X-37B spacecraft has been shrouded in secrecy. Originally intended as part of a NASA project to develop a reusable unmanned spacecraft, this Boeing-designed spaceplane was taken over by the Department of Defense in 2004. And while it has been successfully tested on multiple occasions, there remain some unanswered questions as to its intended purpose and what has been taking place during these flights.

This, predictably, has lead to all kinds of rumors and speculation, with some suggesting that it could be a spy plane while others think that it is intended to deliver space-based weapons. It’s latest mission – which was dubbed OTV-4 (Orbital Test Vehicle-4) – has been especially clandestine. And after nearly a year in orbit, it remains unclear what the X37B has been doing up there all this time.

Continue reading “Super Secret X-37B Nears One Year In Orbit Doing ???”

Weekly Space Hangout – May 13, 2016: Christer Fuglesang

Host: Fraser Cain (@fcain)

Special Guest:
Arne Christer Fuglesang is a Swedish physicist and an ESA astronaut. He was first launched aboard the STS-116 Space Shuttle mission on December 10, 2006, making him the first Swedish citizen in space.

Guests:
Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg)
Kimberly Cartier (@AstroKimCartier )

Their stories this week:

Kepler’s planet count doubles

An update on Boyajian’s Star

Boeing crewed launch slips to 2018

A four-planet system demonstrates migration

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

NASA Welds First Flight Section of SLS Core Stage for 2018 Maiden Launch

Space Launch System (SLS) core stage engine section finishes welding at the Vertical Assembly Center at NASA's Michoud Assembly Facility in New Orleans for maiden flight of SLS rocket. Credit: NASA
Space Launch System (SLS) core stage engine section finishes welding at the Vertical Assembly Center at NASA's Michoud Assembly Facility in New Orleans for maiden flight of SLS rocket. Credit: NASA
Space Launch System (SLS) core stage engine section finishes welding at the Vertical Assembly Center at NASA’s Michoud Assembly Facility in New Orleans for maiden flight of SLS rocket. Credit: NASA

One weld at a time, the flight hardware for NASA’s mammoth new Space Launch System (SLS) booster has at last started taking shape, promising to turn years of planning and engineering discussions into reality and a rocket that will one day propel our astronauts on a ‘Journey to Mars.’

The first actual SLS flight hardware has been assembled, leaping from engineering blueprints on computer screens to individual metallic components that technicians are feeding into NASA’s gigantic “Welding Wonder” machine at the agency’s Michoud Assembly Facility in New Orleans.

Technicians are bending metal and have now finished welding together the pieces of flight hardware forming the first major SLS flight component – namely the engine section that sits at the base of the SLS core stage.

The engine section of the core stage will house the four RS-25 engines that will power the maiden launch of SLS and NASA’s Orion deep space manned spacecraft in late 2018.

The core stage towers over 212 feet (64.6 meters) tall, sports a diameter of 27.6 feet (8.4 m) and stores the cryogenic liquid hydrogen and liquid oxygen that feeds and fuels the boosters RS-25 engines.

A liquid oxygen tank confidence article for NASA's new rocket, the Space Launch System, completes final welding on the Vertical Assembly Center at Michoud Assembly Facility in New Orleans.  Credit: NASA/Michoud/Steven Seipel
A liquid oxygen tank confidence article for NASA’s new rocket, the Space Launch System, completes final welding on the Vertical Assembly Center at Michoud Assembly Facility in New Orleans. Credit: NASA/Michoud/Steven Seipel

SLS will be the most powerful rocket the world has ever seen. It will propel astronauts in the Orion capsule on deep space missions, first back to the Moon by around 2021, then to an asteroid around 2025 and then beyond to the Red Planet in the 2030s – NASA’s overriding and agency wide goal.

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration.   Credit: NASA/MSFC
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

The SLS core stage welding work is carried out in the massive 170-foot-tall Vertical Assembly Center (VAC) at Michoud. Boeing is the prime contractor for the SLS core stage.

On Sept. 12, 2014, NASA Administrator Charles Bolden officially unveiled VAC as the world’s largest welder at Michoud.

“This rocket is a game changer in terms of deep space exploration and will launch NASA astronauts to investigate asteroids and explore the surface of Mars while opening new possibilities for science missions, as well,” said NASA Administrator Charles Bolden during the ribbon-cutting ceremony at Michoud.

NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA's Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built.  Credit: Ken Kremer - kenkremer.com
NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA’s Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built. Credit: Ken Kremer – kenkremer.com

Each of the RS-25’s engines generates some 500,000 pounds of thrust, fueled by cryogenic liquid hydrogen and liquid oxygen. They are recycled for their original use as space shuttle main engines

For SLS they will be operating at 109% of power, compared to a routine usage of 104.5% during the shuttle era. They measure 14 feet tall and 8 feet in diameter.

The SLS weld team has been busy. Technicians have already assembled a qualification version of the engine section on the Vertical Assembly Center at Michoud. Later this year it will be shipped to NASA’s Marshall Space Flight Center in Huntsville, Alabama, to undergo structural loads testing.

In March, they also completed welding of a liquid oxygen tank confidence article on the Vertical Assembly Center. And in February they welded the liquid hydrogen tank confidence article.

SLS core stage will be welded together from barrels and domes using the Vertical Assembly Center (VAC) at NASA’s Michoud Assembly Facility.  Credit: Ken Kremer/ kenkremer.com
SLS core stage will be welded together from barrels and domes using the Vertical Assembly Center (VAC) at NASA’s Michoud Assembly Facility. Credit: Ken Kremer/ kenkremer.com

The SLS core stage is comprised of five major structures: the forward skirt, the liquid oxygen tank, the intertank, the liquid hydrogen tank and the engine section.

The tanks are assembled by joining previously manufactured domes, rings and barrels components together in the Vertical Assembly Center by a process known as friction stir welding. The rings connect and provide stiffness between the domes and barrels.

The SLS core stage builds on heritage from NASA’s Space Shuttle Program and is based on the shuttle’s External Tank (ET). All 135 ET flight units were built at Michoud during the thirty year long shuttle program.

According to the current schedule, NASA plans to finish all welding for the core stage — including confidence, qualification and flight hardware — of the SLS-1 rocket sometime this summer.

Engineers are constructing the confidence and qualification hardware units to verify that the welding equipment and procedures work exactly as planned.

“The confidence will also be used in developing the application process for the thermal protection system, which is the insulation foam that gives the tank its orange color,” say NASA officials.

Altogether , the SLS first stage propulsion comprises the four RS-25 space shuttle main engines and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.

The maiden test flight of the SLS/Orion is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds.

Meanwhile the welded skeletal backbone for the Orion EM-1 mission recently arrived at the Kennedy Space Center on Feb. 1 for outfitting with all the systems and subsystems necessary for flight.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket.  Credit: Ken Kremer/kenkremer.com
Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Resets Launch of Upgraded Falcon 9 Rocket for Serene Sunday Sunset on Feb. 28 – Watch Live

Sunset view of SpaceX Falcon 9 awaiting launch of SES-9 communications satellite on Mar. 4, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Sunset view of SpaceX Falcon 9 awaiting launch of SES-9 communications satellite on Feb. 28, 2016 from Pad 40 at Cape Canaveral, FL after two fueling scrubs. Credit: Ken Kremer/kenkremer.com
Sunset view of SpaceX Falcon 9 awaiting launch of SES-9 communications satellite on Feb. 28, 2016 from Pad 40 at Cape Canaveral, FL after two fueling scrubs. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – Following a pair of back to back launch scrubs this week on Wednesday and Thursday due to rocket fueling issues with the liquid oxygen propellant, SpaceX has reset the blast off of their upgraded Falcon 9 rocket – carrying the commercial SES-9 television and communications satellite – to coincidentally coincide with a serene sunset on Sunday, Feb. 28.

Spectators have flocked to the Florida space coast in hopes of catching a glimpse of what could prove to be a spectacular evening streak to orbit after miserable mid-week weather finally departed the sunshine state in favor of glorious blue skies – to the delight of everyone!

SpaceX engineers are now targeting liftoff of the Cape’s first Falcon 9 launch of 2016 for 6:46 p.m. EST from SpaceX’s seaside Space Launch Complex 40 on Cape Canaveral Air Force Station, Fla. at the opening of a 97-minute launch window.

The first launch scrub on Wednesday was called some 45 minutes before launch.

“Out of an abundance of caution, the team opted to hold launch for today to ensure liquid oxygen temperatures are as cold as possible in an effort to maximize performance of the vehicle,” SpaceX said in a statement.”

The rocket and spacecraft were otherwise nominal.

“The Falcon 9 remains healthy in advance of SpaceX and SES’s mission to deliver the SES-9 satellite to Geostationary Transfer Orbit.”

Upgraded SpaceX Falcon 9 awaits launch of SES-9 communications satellite on Feb. 25, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 awaits launch of SES-9 communications satellite on Feb. 25, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The second scrub was called at 1 minute forty seconds before T zero when engineers were concerned about aspects of the liquid oxygen fuel loading and internal temperatures.

“Countdown held for the day. Teams are reviewing the data and next available launch date,” tweeted SpaceX post scrub.

SpaceX is cooling the liquid oxygen propellant in the upgraded Falcon 9 to lower temperatures compared to the rockets prior version, in order to increase its density and provide more fuel aboard the rocket for the engines to burn.

Both stages of the 229 foot tall Falcon 9 are fueled by liquid oxygen and RP-1kerosene which burn in the Merlin engines.

Air Force meteorologists are predicting an almost unheard of >95% percent chance of favorable weather conditions at launch time Sunday – which could result in an absolutely spectacular view as Falcon roars off the launch pad thunders to space, if all goes well.

The only potential concern at this time is for cumulus clouds associated with onshore flow.

A live webcast will be available at SpaceX.com/webcast beginning about 20 minutes before liftoff, at approximately 6:26 p.m. EST on Sunday, Feb. 28.

The launch window closes at approximately 8:23 p.m. EST.

The weather prognosis changes only slightly to 90 percent GO on Monday, again with a concern for cumulus clouds.

If needed, SpaceX has a backup launch opportunity reserved on the Eastern range for Monday, Feb. 29 at approximately the same time at 6:46 p.m. EST.

SpaceX Falcon 9 rocket venting prior to launch scrub for SES-9 communications satellite on Feb. 26, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Julian Leek
SpaceX Falcon 9 rocket venting prior to launch scrub for SES-9 communications satellite on Feb. 26, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Julian Leek

The goal of Sunday’s launch is to boost the commercial SES-9 television and communications satellite to a Geostationary Transfer Orbit (GTO). The satellite will be deployed approximately 31 minutes after liftoff.

The commercial launch was contracted by the Luxembourg based SES, a world-leading satellite operator. SES provides satellite-enabled communications services to broadcasters, Internet service providers, mobile and fixed network operators, and business and governmental organizations worldwide using its fleet of more than 50 geostationary satellites.

SpaceX Falcon 9 rocket venting prior to launch scrub for SES-9 communications satellite on Feb. 26, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket venting prior to launch scrub for SES-9 communications satellite on Feb. 26, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite launch reports direct from Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Feb 27/28: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 poised for blastoff with SES-9 communications satellite on Feb. 26, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Julian Leek
SpaceX Falcon 9 poised for blastoff with SES-9 communications satellite on Feb. 26, 2016 from Pad 40 at Cape Canaveral, FL. Credit: Julian Leek

ULA Atlas V Delivers Final GPS IIF Navigation Satellite to Orbit for USAF – Critical to Military/Civilian Users

United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission lifted off at 8:38 a.m. EST on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission lifted off at 8:38 a.m. EST on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer/kenkremer.com
United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission lifted off at 8:38 a.m. EST on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION – Despite howling winds and unseasonably frigid temperatures in the ‘sunshine state’, United Launch Alliance’s workhorse Atlas V rocket successfully blasted off this morning, Friday, Feb 5, and delivered the final GPS satellite in the IIF series to orbit for the US Air Force.

The ULA Atlas V carried the Global Positioning System (GPS) IIF-12 navigation satellite to orbit as the booster beautifully pierced the Florida skies – thus completing the constellation of next generation GPS IIF satellites that are critical to both military and civilian users on a 24/7 basis. Continue reading “ULA Atlas V Delivers Final GPS IIF Navigation Satellite to Orbit for USAF – Critical to Military/Civilian Users”

Buildup Of First Boeing Starliner Crew Vehicle Ramps Up at Kennedy Space Center

View of upper dome and newly attached crew access tunnel of the first Boeing CST-100 ‘Starliner’ crew spaceship under assembly at NASA’s Kennedy Space Center. This is part of the maiden Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s refurbished Commercial Crew and Cargo Processing Facility (C3PF) manufacturing facility at KSC. Numerous strain gauges have been installed for loads testing. Credit: Ken Kremer /kenkremer.com

KENNEDY SPACE CENTER, FL – Buildup of the first of Boeing’s CST-100 Starliner crew spaceships is ramping up at the company’s Commercial Crew and Cargo Processing Facility (C3PF) – the new spacecraft manufacturing facility at NASA’s Kennedy Space Center.

In less than two years time Boeing Starliners will start launching NASA astronauts to low Earth orbit and the International Space Station (ISS) atop Atlas V rockets from Florida. Continue reading “Buildup Of First Boeing Starliner Crew Vehicle Ramps Up at Kennedy Space Center”

NASA Receives Significant Budget Boost for Fiscal Year 2016

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

NASA has just received a significant boost in the agency’s current budget after both chambers of Congress passed the $1.1 Trillion 2016 omnibus spending bill this morning, Friday, Dec. 18, which funds the US government through the remainder of Fiscal Year 2016.

As part of the omnibus bill, NASA’s approved budget amounts to nearly $19.3 Billion – an outstandingly magnificent result and a remarkable turnaround to some long awaited good news from the decidedly negative outlook earlier this year. Continue reading “NASA Receives Significant Budget Boost for Fiscal Year 2016”

Atlas V Streaks to Orbit on 100th Successful Mission for ULA with Mexico’s Morelos-3

100th United Launch Alliance (ULA) rocket streaks to orbit with Atlas V booster carrying the Morelos-3 mission for Mexico from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida at 6:28 a.m. EDT, Oct. 2, 2015 as seen from Melbourne Beach pier, Florida. Credit: Julian Leek
100th United Launch Alliance (ULA) rocket streaks to orbit with Atlas V booster carrying the Morelos-3 mission for Mexico from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida at 6:28 a.m. EDT, Oct. 2, 2015 as seen from Melbourne Beach pier, Florida.  Credit: Julian Leek
100th United Launch Alliance (ULA) rocket streaks to orbit with Atlas V booster carrying the Morelos-3 mission for Mexico from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida at 6:28 a.m. EDT, Oct. 2, 2015 as seen from Melbourne Beach pier, Florida. Credit: Julian Leek
See launch photo and video gallery below

United Launch Alliance (ULA) celebrated an incredible milestone today, Oct. 2, with the successful launch of the firms 100th mission on an Atlas V rocket carrying Mexico’s next generation Morelos-3 satellite to provide advanced telecommunications for education and health programs for rural communities and secure communications for Mexican national security needs.

The spectacular predawn liftoff finally took place at 6:28 a.m. EDT from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida – after nearly being derailed by a Continue reading “Atlas V Streaks to Orbit on 100th Successful Mission for ULA with Mexico’s Morelos-3”

Weekly Space Hangout – Oct 2, 2015: Water on Mars, Blood Moon Eclipses, and More Pluto!

Host: Fraser Cain (@fcain)

Guests:

Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Pamela Gay (cosmoquest.org / @cosmoquestx / @starstryder)
Kimberly Cartier (@AstroKimCartier )
Brian Koberlein (@briankoberlein / briankoberlein.com)
Alessondra Springmann (@sondy)
Continue reading “Weekly Space Hangout – Oct 2, 2015: Water on Mars, Blood Moon Eclipses, and More Pluto!”

Boeing Rejects Aerojet Rocketdyne Bid for ULA and Affirms Vulcan Rocket Support, Lockheed Martin Noncommittal

Rendering of the ULA Vulcan rocket blasting off. United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

Boeing has officially and publicly rejected a bid by Aerojet Rocketdyne to buy rocket maker United Launch Alliance (ULA), which the firm co-owns with rival aerospace giant Lockheed Martin. Furthermore Boeing affirmed support for ULA’s new next generation Vulcan rocket now under development, a spokesperson confirmed to Universe Today.

Aerojet Rocketdyne, which supplies critical rocket engines powering ULA’s fleet of Atlas and Delta rockets, recently made an unsolicited offer to buy ULA for approximately $2 Billion in cash, as Universe Today reported last week.

The Vulcan is planned to replace all of ULA’s existing rockets – which are significantly more costly than those from rival launch provider SpaceX, founded by billionaire entrepreneur Elon Musk.

Boeing never “seriously entertained” the Aerojet-Rocketdyne buyout offer, Universe Today confirmed with Boeing spokesperson Cindy Anderson.

Meanwhile in stark contrast to Boeing, Lockheed Martin has “no comment” regarding the Aerojet-Rocketdyne offer to buy ULA, Universe Today confirmed with Lockheed Martin Director External Communications Matt Kramer.

Furthermore Lockheed Martin is not only noncommittal about the future of ULA but is also “currently assessing our options” concerning the development of ULA’s Vulcan rocket, Kramer told me.

“With regard to reports of an unsolicited proposal for ULA, it is not something we seriously entertained for a number of reasons,” Boeing spokesperson Anderson told Universe Today.

“Regarding Aerojet and ULA, as a matter of policy Lockheed Martin does not have a comment,” Lockheed Martin spokesman Kramer told Universe Today.

Vulcan - United Launch Alliance (ULA)  next generation rocket is set to make its debut flight in 2019.  Credit: ULA
Vulcan – United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

ULA was formed in 2006 as a 50:50 joint venture between Lockheed Martin and Boeing that combined their existing expendable rocket fleet families – the Atlas V and Delta IV – under one roof.

Who owns ULA is indeed of significance to all Americans – although most have never head of the company – because ULA holds a virtual monopoly on launches of vital US government national security payloads and the nation’s most critical super secret spy satellites that safeguard our national defense 24/7. ULA’s rocket fleet also launched scores of NASA’s most valuable science satellites including the Curiosity Mars rover, Dawn and New Horizons Pluto planetary probe.

Since 2006 ULA has enjoyed phenomenal launch success with its venerable fleet of Atlas V and Delta IV rockets.

“ULA is a huge part of our strategic portfolio going forward along with our satellites and manned space business. This bid we’ve really not spent much time on it at all because we’re focusing on a totally different direction,” said Chris Chadwick, president and chief executive of Boeing Defense, Space & Security, on Sept. 16 at the Air Force Association’s annual technology expo in National Harbor, Maryland – according to a report by Space News.

Boeing offered strong support for ULA and the Vulcan rocket.

Vulcan is ULA’s next generation rocket to space that can propel payloads to low Earth orbit as well as throughout the solar system – including Pluto. It is slated for an inaugural liftoff in 2019.

Vulcan’s continued development is being funded by Lockheed Martin and Boeing, but only on a quarterly basis.

The key selling point of Vulcan is that it will be an all American built rocket and it will dramatically reduce launch costs to compete toe to toe with the SpaceX Falcon rocket family.

“To be successful and survive ULA needs to transform to be more of a competitive company in a competitive environment,” ULA VP Dr. George Sowers told Universe Today in a wide ranging interview regarding the rationale and goals of the Vulcan rocket.

And there is a heated competition on which of two companies will provide the new American built first stage engine that will replace the Russian-built RD-180 that currently powers the ULA Atlas V.

Vulcan’s first stage will most likely be powered by the BE-4 engine being developed by the secretive Blue Origin aerospace firm owned by billionaire Jeff Bezos.

This week ULA announced an expanded research agreement with Blue Origin about using the BE-4.

But ULA is also evaluating the AR-1 liquid fueled engine being developed by Aerojet-Rocketdyne – the company that wants to buy ULA.

The Atlas V dependence on Russia’s RD-180’s landed at the center of controversy after Russia invaded Crimea in the spring of 2014, raising the ire of Congress and enactment of a ban on their use several years in the future.

ULA is expected to make a final decision on which first stage engine to use between Blue Origin and Aerojet-Rocketdyne, sometime in 2016.

The engine choice would clearly be impacted if Aerojet-Rocketdyne buys ULA.

Boeing for its part says they strongly support ULA and continued development of the Vulcan.

“Boeing is committed to ULA and its business, and to continued leadership in all aspects of space, as evidenced by the recent announcement of an agreement with Blue Origin,” Boeing spokesperson Anderson told me.

Lockheed Martin in complete contrast did not express any long term commitment to Vulcan and just remarked they were merely “actively evaluating continued investment,” as is their right as a stakeholder.

“We have made no long-term commitments on the funding of a new rocket, and are currently assessing our options. The board is actively evaluating continued investment in the new rocket program and will continue to do so,” Lockheed Director, External Communications Matt Kramer told Universe Today.

Another factor is that Aerojet-Rocketdyne has also sought to buy the rights to manufacture the Atlas V from ULA, which is currently planned to be retired several years after Vulcan is introduced, officials have told me.

MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com
Aerojet-Rocketdyne made a bid to buy ULA, manufacturer of the Atlas V, for approximately $2 Billion. MUOS-4 US Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Sept. 2, 2015 at 5:59 a.m. EDT. Credit: Ken Kremer/kenkremer.com

The Atlas V enjoys unparalleled success. Earlier this month on Sept. 2, ULA conducted its 99th launch with the successful blastoff of an Atlas V with the MUOS-4 military communications satellite from Cape Canaveral Air Force Station for the U.S. Navy.

Boeing has also chosen the Atlas V as the launcher that will soon propel Americans astronauts riding aboard the commercially developed Boeing CST-100 ‘Starliner’ taxi to the Earth-orbiting International Space Station (ISS).

Starliner will eventually blastoff atop Vulcan after the Atlas V is retired in the next decade.

Lockheed provided me this update on Vulcan and ULA on Sept 21:

“Lockheed Martin is proud of ULA’s unparalleled track record of mission success, with 99 consecutive successful launches to date. We support the important role ULA plays in providing the nation with assured access to space. ULA’s Vulcan rocket takes the best performance elements of Atlas and Delta and combines them in a new system that will be superior in reliability, cost, weight, and capability. The government is working to determine its strategy for an American-made engine and future launch services. As they make those determinations we’ll adjust our strategy to make sure we’re aligned with the government’s objectives and goals.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

First view of upper half of the Boeing CST-100 'Starliner' crewed space taxi unveiled at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA's Kennedy Space Center. This will be part of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com
First view of upper half of the Boeing CST-100 ‘Starliner’ crewed space taxi unveiled at the Sept. 4, 2015 Grand Opening ceremony held in the totally refurbished C3PF manufacturing facility at NASA’s Kennedy Space Center. This will be part of the first Starliner crew module known as the Structural Test Article (STA) being built at Boeing’s Commercial Crew and Cargo Processing Facility (C3PF) at KSC. Credit: Ken Kremer /kenkremer.com