Living in space comes with risks. For astronauts on the International Space Station (ISS), those risks occasionally make themselves intrusively apparent.
Earlier this month, European Space Agency astronaut Andreas Mogensen snapped a photo of the Canadarm2, in which damage from a micrometeorite impact is clearly visible.
A Chinese satellite pulled a defunct navigation satellite out of the way of other satellites on January 22nd. The satellite, called SJ-21, appeared to operate as a space tug when it grappled onto the navigation satellite from the Chinese CompassG2 network. The operation details didn’t come from Chinese authorities but a report by ExoAnalytic Solutions, a commercial space monitoring company.
Chinese authorities are tight-lipped about the operation, but what can observations tell us about Chinese capabilities?
The International Space Station’s robotic arm, Canadarm2, was struck by a piece of space debris. But luckily, it appears to be only a flesh wound, and the arm has been cleared for nominal operations while analysis on the strike continues.
NASA and the Canadian Space Agency (CSA) recently announced that a Canadian astronaut will fly as part of the crew of Artemis II. This mission, scheduled for May of 2024, will see an Orion space capsule conduct a circumlunar flight where it flies around the Moon without landing. This will be the first of two crew opportunities that NASA will provide for Canadian astronauts on Artemis missions (as per the agreement).
Check out this image of the Canadian Space Agency’s (CSA) Canadarm2 on the International Space Station. The CSA’s Dextre is attached to one end of the arm. The Canadarm2 played a vital role in assembling the ISS, while Dextre helps maintain the ISS, freeing astronauts from routine yet dangerous spacewalks, and allowing them to focus on science.
When you think of a robot, you’re probably imagining some kind of human-shaped machine. And until now, the robotic spacecraft we’ve sent out into space to help us explore the Solar System look nothing like that. But that vision of robots is coming back, thanks to a few new robots in development by NASA and other groups.
We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.
KENNEDY SPACE CENTER, FL – A SpaceX Dragon supply ship jam packed with more than 2.5 tons of critical science gear, crew supplies and 40 mice successfully arrived this morning at the International Space Station (ISS) – where six humans from the US, Russia and France are living and working aboard.
Dragon reached the station four days after it was launched from the Kennedy Space Center (KSC) on Sunday, Feb. 19 on the first Falcon 9 rocket ever to blast off from historic launch pad 39A in a blaze of glory.
Astronauts Thomas Pesquet of ESA (European Space Agency) and station commander Shane Kimbrough of NASA deftly maneuvered the space station’s 57.7-foot (17.6-meter) Canadian-built Canadarm2 robotic arm to reach out and flawlessly capture the Dragon CRS-10 spacecraft at about 5:44 a.m. EST early Thursday, after it arrived at the station.
Pesquet and Kimbrough were working at the robotics work station inside the seven windowed Cupola module as they monitored Dragon’s approach for capture by the grappling snares on the terminus of the robotic arm this morning as the station was soaring over the northwest coast of Australia.
“Looks like we have a great Dragon capture,” said capcom astronaut Mike Hopkins.
“We want to congratulate all the teams working around the world for the successful arrival,” said Pesquet.
The million pound station is orbiting approximately 250 miles (400 km) above Earth.
The commercial Dragon cargo freighter arrived about 16 minutes earlier than originally planned.
The duo were assisted by experienced NASA astronaut Peggy Whitson. The 57 year old Whitson will soon set a record for most time spent in space by an American on April 24.
The gumdrop shaped Dragon cargo freighter slowly and methodically approached the station and the capture point through the required approach corridor during the final stages of the orbital chase.
After hovering at the capture point in free drift at a distance of about 34 feet (11 m) from the orbiting outpost, the crew members extended the robotic arm and Dragon was successfully plucked from free space using Canardarm2 at the grapple fixture located on the side of the supply ship.
The entire thrilling approach and grappling sequence was broadcast live on NASA TV.
Robotics officers on the ground at the NASA’s Johnson Space Center then took over and berthed Dragon to the Earth facing port on the Harmony module at about 8 a.m. as the mated craft were soaring over central America.
16 latches and bolts on the stations Common Berthing Mechanism (CBM) will hold Dragon firmly in place for a hard mate to the stations Harmony module.
4 gangs of 4 bolts were driven into place with ground commands from the robotics officer to firmly bolt Dragon to the nadir port on Harmony.
The second stage capture and Dragon installation was confrmed at 8:12 a.m. Feb 23 as the craft were flying over the US East Coast.
“Today’s’ re-rendezvous has gone by the book,” said NASA commentator Rob Navias.
“Dragon systems are in excellent shape.”
“There have been no issues and everything has gone as planned.”
“Today was smooth sailing as Dragon arrived below the space station and maneuvered its way through a carefully choreographed procedure to the grapple position for rendezvous and capture.”
“Dragon is now firmly attached to the International Space Station and the crew will begin unloading critical science payloads and supplies this afternoon.”
“Today’s’ re-rendezvous has gone by the book,” said NASA commentator Rob Navias.
“Dragon systems are in excellent shape.”
“There have been no issues and everything has gone as planned.”
Yesterday’s rendezvous was automatically aborted when a bad bit of navigational data was uplinked to Dragons relative GPS navigation system as it was about 0.7 miles below the station.
“The Dragon’s computers received an incorrect navigational update, triggering an automatic wave off. Dragon was sent on a “racetrack” trajectory in front of, above and behind the station for today’s second rendezvous attempt.”
There was never any danger to the crew, space station or Dragon. It merely arrived a day later than planned as it is fully equipped to do if needed.
CRS-10 counts as the company’s tenth scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).
The Dragon is the first of two cargo craft arriving at the station over two consecutive days.
The unpiloted Russian Progress 66 supply ship launched yesterday from Baikonur is slated to arrive early Friday morning with 2.9 tons of supplies. It will automatically dock at the Pirs docking module at about 3:45 a.m., with a trio of Russian cosmonauts monitoring all the action.
After conducting leak checks, the crew plans to open the hatch to Dragon later today.
They will quickly begin removing the highest priority science investigations and gear first.
Dragon will remain at the station for about 30 days.
1000 pounds of ‘late stow’ experiments were loaded the day before the originally planned Feb. 18 liftoff of the SpaceX Falcon 9 rocket.
Dragon was successfully launched from NASA’s Kennedy Space Center atop the 213-foot-tall (65-meter) SpaceX Falcon 9 rocket at 9:38 a.m. EST on Feb. 19, 2017 from historic Launch Complex 39A to low Earth orbit.
Dragon is carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload in support of the Expedition 50 and 51 crew members.
SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere. It is one of NASA’s longest running earth science programs.
The LIS lightning mapper will measure the amount, rate and energy of lightning as it strikes around the world from the altitude of the ISS as it orbits Earth. Its data will complement that from the recently orbited GLM lighting mapper lofted to geosynchronous aboard the NASA/NOAA GOES-R spacecraft instrument.
NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.
SAGE III and RAVEN were stowed in the Dragon’s unpressurized truck.
The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.
The 40 mice will be used in a wound healing experiment to test therapies in microgravity.
An advanced plant growth habitat will launch soon to test better technologies for growing crops in space that could contribute to astronauts nutrition on long duration spaceflights.
SpaceX Dragon CRS-10 Cargo manifest from NASA:
TOTAL CARGO: 5489.5 lbs. / 2490 kg
TOTAL PRESSURIZED CARGO WITH PACKAGING: 3373.1 lbs. / 1530 kg
• Science Investigations 1613.8 lbs. / 732 kg
• Crew Supplies 652.6 lbs. / 296 kg
• Vehicle Hardware 842.2 lbs. / 382 kg
• Spacewalk Equipment 22.0 lbs. / 10 kg
• Computer Resources 24.2 lbs. / 11 kg
• Russian Hardware 48.5 lbs. / 22 kg
For decades, Canada has made significant contributions to the field of space exploration. These include the development of sophisticated robotics, optics, participation in important research, and sending astronauts into space as part of NASA missions. And who can forget Chris Hadfield, Mr. “Space Oddity” himself? In addition to being the first Canadian to command the ISS, he is also known worldwide as the man who made space exploration fun and accessible through social media.
And in recent statement, the Canadian Space Agency (CSA) has announced that it is looking for new recruits to become the next generation of Canadian astronauts. With two positions available, they are looking for applicants who embody the best qualities of astronauts, which includes a background in science and technology, exceptional physical fitness, and a desire to advance the cause of space exploration.
Over the course of the past few decades, the Canadian Space Agency has established a reputation for the development of space-related technologies. In 1962, Canada deployed the Alouette satellite, which made it the third nation – after the US and USSR – to design and build its own artificial Earth satellite. And in 1972, Canada became the first country to deploy a domestic communications satellite, known as Anik 1 A1.
Perhaps the best-known example of Canada’s achievements comes in the field of robotics, and goes by the name of the Shuttle Remote Manipulator System (aka. “the Canadarm“). This robotic arm was introduced in 1981, and quickly became a regular feature within the Space Shuttle Program.
“Canadarm is the best-known example of the key role of Canada’s space exploration program,” said Maya Eyssen, a spokeperson for the CSA, via email. “Our robotic contribution to the shuttle program secured a mission spot for our nation’s first astronaut to fly to space –Marc Garneau. It also paved the way for Canada’s participation in the International Space Station.”
It’s successor, the Canadarm2, was mounted on the International Space Station in 2001, and has since been augmented with the addition of the Dextre robotic hand – also of Canadian design and manufacture. This arm, like its predecessor, has become a mainstay of operations aboard the ISS.
“Over the past 15 years, Canadarm2 has played a critical role in assembling and maintaining the Station,” said Eyssen. “It was used on almost every Station assembly mission. Canadarm2 and Dextre are used to capture commercial space ships, unload their cargo and operate with millimeter precision in space. They are both featured on our $5 bank notes. The technology behind these robots also benefits those on earth through technological spin-offs used for neurosurgery, pediatric surgery and breast-cancer detection.”
In terms of optics, the CSA is renowned for the creation of the Advanced Space Vision System (SVS) used aboard the ISS. This computer-vision system uses regular 2D cameras located in the Space Shuttle Bay, on the Canadarm, or on the hull of the ISS itself – along with cooperative targets – to calculate the 3D position of objects around of the station.
But arguably, Canada’s most enduring contribution to space exploration have come in the form of its astronauts. Long before Hadfield was garnering attention with his rousing rendition of David Bowie’s “Space Oddity“, or performing “Is Someone Singing (ISS)” with The Barenaked Ladies and The Wexford Gleeks choir (via a video connection from the ISS), Canadians were venturing into space as part of several NASA missions.
Consider Marc Garneau, a retired military officer and engineer who became the first Canadian astronaut to go into space, taking part in three flights aboard NASA Space shuttles in 1984, 1996 and 2000. Garneau also served as the president of the Canadian Space Agency from 2001 to 2006 before retiring for active service and beginning a career in politics.
And how about Roberta Bondar? As Canada’s first female astronaut, she had the additional honor of designated as the Payload Specialist for the first International Microgravity Laboratory Mission (IML-1) in 1992. Bondar also flew on the NASA Space Shuttle Discovery during Mission STS-42 in 1992, during which she performed experiments in the Spacelab.
And then there’s Robert Thirsk, an engineer and physician who holds the Canadian records for the longest space flight (187 days 20 hours) and the most time spent in space (204 days 18 hours). All three individuals embodied the unique combination of academic proficiency, advanced training, personal achievement, and dedication that make up an astronaut.
And just like Hadfield, Bonard, Garneau and Thirsk have all retired on gone on to have distinguished careers as chancellors of academic institutions, politicians, philanthropists, noted authors and keynote speakers. All told, eight Canadians astronauts have taken part in sixteen space missions and been deeply involved in research and experiments conducted aboard the ISS.
Alas, every generation has to retire sooner or later. And having made their contributions and moved onto other paths, the CSA is looking for two particularly bright, young, highly-motivated and highly-skilled people to step up and take their place.
The recruitment campaign was announced this past Sunday, July 17th, by the Honourable Navdeep Bains – the Minister of Innovation, Science and Economic Development. Those who are selected will be based at NASA’s Johnson Space Center in Houston, Texas, where they will provide support for space missions in progress, and prepare for future missions.
Canadian astronauts also periodically return to Canada to participate in various activities and encourage young Canadians to pursue an education in the STEM fields (science, technology, engineering and mathematics). As Eyssen explained, the goals of the recruitment drive is to maintain the best traditions of the Canadian space program as we move into the 21st century:
“The recruitment of new astronauts will allow Canada to maintain a robust astronaut corps and be ready to play a meaningful role in future human exploration initiatives. Canada is currently entitled to two long-duration astronaut flights to the ISS between now and 2024. The first one, scheduled for November 2018, will see David Saint-Jacqueslaunch to space for a six-month mission aboard the ISS. The second flight will launch before 2024. As nations work together to chart the next major international space exploration missions, our continued role in the ISS will ensure that Canada is well-positioned to be a trusted partner in humanity’s next steps in space.
“Canada is seeking astronauts to advance critical science and research aboard the International Space Station and pave the way for human missions beyond the Station. Our international partners are exploring options beyond the ISS. This new generation of astronauts will be part of Canada’s next chapter of space exploration. That may include future deep-space exploration missions.”
The recruitment drive will be open from June 17th to August 15th, 2016, and the selected candidates are expected to be announced by next summer. This next class of Canadian astronaut candidates will start their training in August 2017 at the Johnson Space Center. The details can be found at the Canadian Space Agency‘s website, and all potential applicants are advised to read the campaign information kit before applying.
Alongside their efforts to find the next generation of astronauts, the Canadian government’s 2016 annual budget has also provided the CSA with up to $379 million dollars over the next eight years to extend Canada’s participation in the International Space Station on through to 2024. Gotta’ keep reaching for those stars, eh?
The commercial Cygnus cargo spaceship, loaded with over three tons of critically needed supplies and research experiments, successfully rendezvoused and docked with the International Space Station (ISS) this morning (Dec. 9) after blazing to orbit on Sunday, Dec. 6, and thereby successfully resumed the American resupply chain to orbit – just in time for Christmas in Space!
The Orbital ATK Cygnus CRS-4 resupply vessel arrived in the vicinity of the massive orbiting outpost around 530 a.m. EST today with pinpoint accuracy after precisely firing its maneuvering thrusters to home in on the complex during a two day orbital chase.
The clock is ticking towards the next launch of a SpaceX cargo vessel to the International Space Station (ISS) hauling critical supplies to the six astronauts and cosmonauts serving aboard, that now includes the first ever ‘One-Year Mission’ station crew comprising NASA’s Scott Kelly and Russia’s Mikhail Kornienko.
The mission, dubbed SpaceX CRS-6 (Commercial Resupply Services-6) will also feature the next daring attempt by SpaceX to recover the Falcon 9 booster rocket through a precision guided soft landing onto an ocean-going barge.
SpaceX and NASA are now targeting blastoff of the Falcon 9 rocket and Dragon spacecraft for Monday, April 13, just over a week from now, at approximately 4:33 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.
NASA Television plans live launch coverage starting at 3:30 p.m.
The launch window is instantaneous, meaning that the rocket must liftoff at the precisely appointed time. Any delays due to weather or technical factors will force a scrub.
The backup launch day in case of a 24 hour scrub is Tuesday, April 14, at approximately 4:10 p.m.
Falcon 9 launches have been delayed due to issues with the rockets helium pressurization bottles that required investigation.
The Falcon 9 first stage is outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX. Cargo delivery to the station is the overriding primary objective and the entire reason for the mission.
An on time launch on April 13 will result in the Dragon spacecraft rendezvousing with the Earth orbiting outpost Wednesday, April 15 after a two day orbital chase.
After SpaceX engineers on the ground maneuver the Dragon close enough to the station, European Space Agency (ESA) astronaut Samantha Cristoforetti will use the station’s 57.7-foot-long (17-meter-long) robotic arm to reach out and capture Dragon at approximately 7:14 a.m. EDT on April 15.
Cristoforetti will be assisted by fellow Expedition 43 crew member and NASA astronaut Terry Virts, as they work inside the stations seven windowed domed cupola to berth Dragon at the Earth-facing port of the Harmony module.
Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.
CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.
Dragon is packed with more than 4,300 pounds (1915 kilograms) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person Expedition 43 and 44 crews serving aboard the ISS.
The ship will remain berthed at the ISS for about five weeks.
The ISS cannot function without regular deliveries of fresh cargo by station partners from Earth.
The prior resupply mission, CRS-5, concluded in February with a successful Pacific Ocean splashdown and capsule recovery.
The CRS-5 mission also featured SpaceX’s history making attempt at recovering the Falcon 9 first stage as a first of its kind experiment to accomplish a pinpoint soft landing of a rocket onto a tiny platform in the middle of a vast ocean using a rocket assisted descent.
As I wrote earlier at Universe Today, despite making a ‘hard landing’ on the vessel dubbed the ‘autonomous spaceport drone ship,’ the 14 story tall Falcon 9 first stage did make it to the drone ship, positioned some 200 miles offshore of the Florida-Carolina coast, northeast of the launch site in the Atlantic Ocean. The rocket broke into pieces upon hitting the barge.
Listen to my live radio interview with BBC 5LIVE conducted in January 2015, discussing SpaceX’s first attempt to land and return their Falcon-9 booster.
Watch for Ken’s onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.