7 Days Out From Orbital Insertion, NASA’s Juno Images Jupiter and its Largest Moons

This annotated color view of Jupiter and its four largest moons -- Io, Europa, Ganymede and Callisto -- was taken by the JunoCam camera on NASA's Juno spacecraft on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) from Jupiter. Image credit: NASA/JPL-Caltech/MSSS
This annotated color view of Jupiter and its four largest moons -- Io, Europa, Ganymede and Callisto -- was taken by the JunoCam camera on NASA's Juno spacecraft on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) from Jupiter. Image credit: NASA/JPL-Caltech/MSSS
This annotated color view of Jupiter and its four largest moons — Io, Europa, Ganymede and Callisto — was taken by the JunoCam camera on NASA’s Juno spacecraft on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) from Jupiter. Image credit: NASA/JPL-Caltech/MSSS

Now just 7 days out from a critical orbital insertion burn, NASA’s Jupiter-bound Juno orbiter is closing in fast on the massive gas giant. And as its coming into focus the spacecraft has begun snapping a series of beautiful images of the biggest planet and its biggest moons.

In a newly released color image snapped by the probes educational public outreach camera named Junocam, banded Jupiter dominates a spectacular scene that includes the giant planet’s four largest moons — Io, Europa, Ganymede and Callisto.

Junocam’s image of the approaching Jovian system was taken on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) and hints at the multitude of photos and science riches to come from Juno.

“Juno on Jupiter’s Doorstep,” says a NASA description. “And the alternating light and dark bands of the planet’s clouds are just beginning to come into view,” revealing its “distinctive swirling bands of orange, brown and white.”

This color view of Jupiter and its four largest moons -- Io, Europa, Ganymede and Callisto -- was taken by the JunoCam camera on NASA's Juno spacecraft on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) from Jupiter. Image credit: NASA/JPL-Caltech/MSSS
This color view of Jupiter and its four largest moons — Io, Europa, Ganymede and Callisto — was taken by the JunoCam camera on NASA’s Juno spacecraft on June 21, 2016, at a distance of 6.8 million miles (10.9 million kilometers) from Jupiter. Image credit: NASA/JPL-Caltech/MSSS

Rather appropriately for an American space endeavor, the fate of the entire mission hinges on do or die ‘Independence Day’ fireworks.

On the evening of July 4, Juno must fire its main engine for 35 minutes.

The Joy of JOI – or Jupiter Orbit Insertion – will place NASA’s robotic explorer into a polar orbit around the gas giant.

The approach over the north pole is unlike earlier probes that approached from much lower latitudes nearer the equatorial zone, and thus provide a perspective unlike any other.

After a five-year and 2.8 Billion kilometer (1.7 Billion mile) outbound trek to the Jovian system and the largest planet in our solar system and an intervening Earth flyby speed boost, the moment of truth for Juno is now inexorably at hand.

This colorized composite shows more than half of Earth’s disk over the coast of Argentina and the South Atlantic Ocean as the Juno probe slingshotted by on Oct. 9, 2013 for a gravity assisted acceleration to Jupiter. The mosaic was assembled from raw images taken by the Junocam imager. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo
This colorized composite shows more than half of Earth’s disk over the coast of Argentina and the South Atlantic Ocean as the Juno probe slingshotted by on Oct. 9, 2013 for a gravity assisted acceleration to Jupiter. The mosaic was assembled from raw images taken by the Junocam imager. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo

And preparations are in full swing by the science and engineering team to ensure a spectacular Fourth of July fireworks display.

The team has been in contact with Juno 24/7 since June 11 and already uplinked the rocket firing parameters.

Signals traveling at the speed of light take 10 minutes to reach Earth.

The protective cover that shields Juno’s main engine from micrometeorites and interstellar dust was opened on June 20.

“And the software program that will command the spacecraft through the all-important rocket burn was uplinked,” says NASA.

The pressurization of the propulsion system is set for June 28.

“We have over five years of spaceflight experience and only 10 days to Jupiter orbit insertion,” said Rick Nybakken, Juno project manager from NASA’s Jet Propulsion Laboratory in Pasadena, California, said in a statement.

“It is a great feeling to put all the interplanetary space in the rearview mirror and have the biggest planet in the solar system in our windshield.”

On the night of orbital insertion, Juno will fly within 2,900 miles (4,667 kilometers) of the Jovian cloud tops.

All instruments except those critical for the JOI insertion burn on July 4, will be tuned off on June 29. That includes shutting down Junocam.

“If it doesn’t help us get into orbit, it is shut down,” said Scott Bolton, Juno’s principal investigator from the Southwest Research Institute in San Antonio.

“That is how critical this rocket burn is. And while we will not be getting images as we make our final approach to the planet, we have some interesting pictures of what Jupiter and its moons look like from five-plus million miles away.”

During a 20 month long science mission – entailing 37 orbits lasting 11 days each – the probe will plunge to within about 3000 miles of the turbulent cloud tops and collect unprecedented new data that will unveil the hidden inner secrets of Jupiter’s origin and evolution.

“Jupiter is the Rosetta Stone of our solar system,” says Bolton. “It is by far the oldest planet, contains more material than all the other planets, asteroids and comets combined and carries deep inside it the story of not only the solar system but of us. Juno is going there as our emissary — to interpret what Jupiter has to say.”

During the orbits, Juno will probe beneath the obscuring cloud cover of Jupiter and study its auroras to learn more about the planet’s origins, structure, atmosphere and magnetosphere.

Junocam has already taken some striking images during the Earth flyby gravity assist speed boost on Oct. 9, 2013.

For example the dazzling portrait of our Home Planet high over the South American coastline and the Atlantic Ocean.

For a hint of what’s to come, see our colorized Junocam mosaic of land, sea and swirling clouds, created by Ken Kremer and Marco Di Lorenzo.

NASA's Juno probe captured the image data for this composite picture during its Earth flyby on Oct. 9 over Argentina,  South America and the southern Atlantic Ocean. Raw imagery was reconstructed and aligned by Ken Kremer and Marco Di Lorenzo, and false-color blue has been added to the view taken by a near-infrared filter that is typically used to detect methane. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo
NASA’s Juno probe captured the image data for this composite picture during its Earth flyby on Oct. 9 over Argentina, South America and the southern Atlantic Ocean. Raw imagery was reconstructed and aligned by Ken Kremer and Marco Di Lorenzo, and false-color blue has been added to the view taken by a near-infrared filter that is typically used to detect methane. Credit: NASA/JPL/SwRI/MSSS/Ken Kremer/Marco Di Lorenzo

As Juno sped over Argentina, South America and the South Atlantic Ocean it came within 347 miles (560 kilometers) of Earth’s surface.

During the flyby, the science team observed Earth using most of Juno’s nine science instruments since the slingshot also serves as an important dress rehearsal and key test of the spacecraft’s instruments, systems and flight operations teams.

Juno soars skyward to Jupiter on Aug. 5, 2011 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer/kenkremer.com
Juno soars skyward to Jupiter on Aug. 5, 2011 from launch pad 41 at Cape Canaveral Air Force Station at 12:25 p.m. EDT. View from the VAB roof. Credit: Ken Kremer/kenkremer.com

The $1.1 Billion Juno was launched on Aug. 5, 2011 from Cape Canaveral, Florida atop the most powerful version of the Atlas V rocket augmented by 5 solid rocket boosters and built by United Launch Alliance (ULA). That same Atlas V 551 version just launched MUOS-5 for the US Navy on June 24.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Ken Kremer

Juno spacecraft and its science instruments. Image credit: NASA/JPL
Juno spacecraft and its science instruments. Image credit: NASA/JPL
Juno graphic
Juno orbital graphic

Spectacular Launch of Most Powerful Atlas Completes Constellation of Navy’s Advanced Tactical Comsats – Gallery

A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5 mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016. Credit: United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5  mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT.  Credit:  United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5 mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016. Credit: United Launch Alliance

Today’s (June 24) spectacular launch of the most powerful version of the venerable Atlas V rocket from the sunshine state completes the orbital deployment of a constellation of advanced tactical communications satellites for the U.S. Navy.

A United Launch Alliance (ULA) Atlas V rocket successfully launched the massive MUOS-5 satellite into clear blue skies from Space Launch Complex-41 on Cape Canaveral Air Force Station, Florida, at 10:30 a.m. EDT – on its way to a geosynchronous orbit location approximately 22,000 miles (37,586 km) above the Earth.

Note: Check back again for an expanding gallery of launch photos and videos

The Mobile User Objective System-5 (MUOS-5) satellite is the last in a five-satellite constellation that will provide military forces with significantly improved and assured communications worldwide. Lockheed Martin is the prime contractor for the MUOS system.

As launch time neared the weather odds improved to 100% GO and Atlas rumbled off the pad for on time launch that took place at the opening of a 44 minute window.

The launch was broadcast live on a ULA webcast.

The 206 foot tall Atlas rocket roared to space on an expanding plume of smoke and crackling fire from the first stage liquid and solid fueled engines generating over 2.5 million pounds of liftoff thrust.

Their contribution complete, all 5 solid rocket motors were jettisoned with seconds about 2 minutes after liftoff as the liquid fueled first stage continued firing.

The spent first stage separated about 5 minutes after liftoff, as the Centaur second stage fires up for the first of three times over almost three hours to deliver the hefty payload to orbit.

Blastoff of United Launch Alliance (ULA) Atlas V rocket on MUOS-5  mission from Space Launch Complex-41 on June 24, 2016.  Credit: Lane Hermann
Blastoff of United Launch Alliance (ULA) Atlas V rocket on MUOS-5 mission from Space Launch Complex-41 on June 24, 2016. Credit: Lane Hermann

“We are honored to deliver the final satellite in the MUOS constellation for the U.S. Navy,” said Laura Maginnis, ULA vice president, Custom Services, in a statement.

“Congratulations to our navy, air force and Lockheed Martin mission partners on yet another successful launch that provides our warfighters with enhanced communications capabilities to safely and effectively conduct their missions around the globe.”

This is the fifth satellite in the MUOS series and will provide military users up to 16 times more communications capability over existing systems, including simultaneous voice, video and data, leveraging 3G mobile communications technology.

Long plume from MUOS-5 Atlas V Launch by United Launch Alliance from Space Launch Complex-41 on June 24, 2016.  Credit: Michael Seeley
Long plume from MUOS-5 Atlas V Launch by United Launch Alliance from Space Launch Complex-41 on June 24, 2016. Credit: Michael Seeley

With MUOS-5 in orbit the system’s constellation is completed.

MUOS-5 will serve as an on orbit spare. It provides the MUOS network with near-global coverage. Communications coverage for military forces now extends further toward the North and South poles than ever before, according to Lockheed Martin officials.

“Like its predecessors, the MUOS-5 satellite has two payloads to support both new Wideband Code Division Multiple Access (WCDMA) waveform capabilities, as well as the legacy Ultra High Frequency (UHF) satellite system. On orbit, MUOS-5 will augment the constellation as a WCDMA spare, while actively supporting the legacy UHF system, currently used by many mobile forces today.”

The prior MUOS-4 satellite was launched on Sept. 2, 2015 – as I reported here.

The 20 story tall Atlas V launched in its most powerful 551 configuration and performed flawlessly.

United Launch Alliance (ULA) Atlas V rocket carrying MUOS-5 military comsat streaks to orbit atop a vast exhaust plume after liftoff from Space Launch Complex-41 on June 24, 2016.  Credit: Jillian Laudick
United Launch Alliance (ULA) Atlas V rocket carrying MUOS-5 military comsat streaks to orbit atop a vast exhaust plume after liftoff from Space Launch Complex-41 on June 24, 2016. Credit: Jillian Laudick

The vehicle includes a 5-meter diameter payload fairing and five solid rocket boosters that augment the first stage. The Atlas booster for this mission was powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

And the rocket needed all that thrust because the huge MUOS-5 was among the heftiest payloads ever lofted by an Atlas V booster, weighing in at some 15,000 pounds.
The Centaur upper stage was fired a total of three times.

For this mission the payload fairing was outfitted with an upgraded and advanced acoustic system to beet shield the satellite from the intense vibrations during the launch sequence.

This Atlas launch had been delayed several months to rectify a shortfall in the first stage thrust that occurred during the prior mission launching the Orbital ATK OA-6 cargo freighter in March 2016 on a contract mission for NASA to resupply the International Space Station (ISS).

The launch comes just two weeks after blastoff of the ULA Delta IV Heavy, the worlds most powerful rocket, on a mission to deliver a top secret spy satellite to orbit – as I witnessed and reported on here.

“I am so proud of the team for all their hard work and commitment to 100 percent mission success,” Maginnis added.

“It is amazing to deliver our second national security payload from the Cape in just two weeks. I know this success is due to our amazing people who make the remarkable look routine.”

The 15,000 pound MUOS payload is a next-generation narrowband tactical satellite communications system designed to significantly improve ground communications for U.S. forces on the move.

Here’s a detailed mission profile video describing the launch events:

Video caption: Atlas V MUOS-5 Mission Profile launched on June 24, 2016 from Cape Canaveral Air force Station. Credit: ULA

The launch was supported by the 45th Space Wing.

“Today’s successful launch is the culmination of the 45th Space Wing, Space and Missile Systems Center, Navy and ULA’s close partnership and dedicated teamwork,” said Brig. Gen. Wayne Monteith, 45th Space Wing commander and mission Launch Decision Authority, in a statement.

“We continue our unwavering focus on mission success and guaranteeing assured access to space for our nation, while showcasing why the 45th Space Wing is the ‘World’s Premiere Gateway to Space.”

Watch this exciting launch highlights video reel from ULA – including deployment of MUOS-5!

The MUOS-5 launch marked the 63rd Atlas V mission since the vehicle’s inaugural launch in August 2002. To date seven flights have launched in the 551 configuration. These include all four prior MUOS missions as well as NASA’s New Horizons mission to Pluto and the Juno mission to Jupiter.

Watch my up close remote launch video from the pad with hurling rocks:

Video caption: The sounds and fury of a ULA Atlas V 551 rocket blast off carrying Lockheed Martin built MUOS-5 tactical communications satellite to geosynchronous orbit for US Navy on June 24, 2016 at 10:30 a.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from remote camera positioned at pad. Credit: Ken Kremer/kenkremer.com

Watch this compilation of dramatic launch videos from Jeff Seibert.

Video Caption: MUOS-5 launch compilation on ULA Atlas 5 rocket on 6/24/2016 from Pad 41 of CCAFS. Credit: Jeff Seibert

The Navy's fifth Mobile User Objective System (MUOS) is encapsulated inside an Atlas V five-meter diameter payload fairing.  Credit: ULA
The Navy’s fifth Mobile User Objective System (MUOS) is encapsulated inside an Atlas V five-meter diameter payload fairing. Credit: ULA

The next Atlas V launch is slated for July 28 with the NROL-61 mission for the National Reconnaissance Office (NRO).

Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com
Blastoff of MUOS-4 US Navy communications satellite on United Launch Alliance Atlas V rocket from pad 41 at Cape Canaveral Air Force Station, FL on Sept. 2, 2015. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

United Launch Alliance (ULA) Atlas V rocket poised for launch on MUOS-5  mission from Space Launch Complex-41 on June 24, 2016.  Credit: Lane Hermann
United Launch Alliance (ULA) Atlas V rocket poised for launch on MUOS-5 mission from Space Launch Complex-41 on June 24, 2016. Credit: Lane Hermann
Artist’s concept of a MUOS satellite in orbit. Credit: Lockheed Martin
Artist’s concept of a MUOS satellite in orbit. Credit: Lockheed Martin
MUOS-5 mission logo. Credit: ULA
MUOS-5 mission logo. Credit: ULA
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5  mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016.  Credit:  United Launch Alliance
A United Launch Alliance (ULA) Atlas V rocket carrying the MUOS-5 mission lifts off from Space Launch Complex-41 at 10:30 a.m. EDT on June 24, 2016. Credit: United Launch Alliance

Pancaked SpaceX Falcon Pulls into Port After Trio of Spectacular Landings; Photos/Videos

Flattened SpaceX Falcon 9 first stage arrived into Port Canaveral, FL atop a droneship late Saturday, June 18 after hard landing and tipping over following successful June 15, 2016 commercial payload launch. Credit: Julian Leek
Flattened SpaceX Falcon 9 first stage arrived into Port Canaveral, FL atop a droneship late Saturday, June 18 after hard landing and tipping over following successful June 15, 2016  commercial payload launch to orbit.  Credit: Julian Leek
Flattened SpaceX Falcon 9 first stage arrived into Port Canaveral, FL atop a droneship late Saturday, June 18 after hard landing and tipping over following successful June 15, 2016 commercial payload launch to orbit. Credit: Julian Leek

CAPE CANAVERAL AIR FORCE STATION, FL — The pancaked leftovers of a SpaceX Falcon 9 first stage from last week’s successful commercial launch but hard landing at sea, pulled silently and without fanfare into its home port over the weekend – thereby ending a string of three straight spectacular and upright soft ocean landings over the past two months.

The residue of the Falcon sailed into home port at Port Canaveral, Fl under cover of darkness and covered by a big blue tarp late Saturday night, June 18, at around 9 p.m. EDT.

It arrived atop SpaceX’s ASDS drone ship landing platform known as “Of Course I Still Love You” or “OCISLY” – that had already been dispatched several days prior to the June 15 morning launch from the Florida space coast.

Pancaked SpaceX Falcon 9 first stage arrived at night into Port Canaveral, FL atop a droneship on June 18 after hard landing at sea following successful June 15, 2016  commercial payload launch to orbit.  Credit: Lane Hermann
Pancaked SpaceX Falcon 9 first stage arrived at night into Port Canaveral, FL atop a droneship on June 18 after hard landing at sea following successful June 15, 2016 commercial payload launch to orbit. Credit: Lane Hermann

And check out this exquisite hi res aerial video of the tarp ‘Blowing in the Wind’ – showing an even more revealing view of the remains of the Falcon 9 after much of the tarp was blown away by whipping sunshine state winds.

Video Caption: SpaceX booster remains from Eutelsat-ABS launch seen in Port Canaveral on 06-19-2016 the day after arrival. The wind blew off part of the tarps covering what is left of Eutelsat-ABS booster. Credit: USLaunchReport

Recovering and eventually reusing the 156 foot tall Falcon 9 first stage to loft new payloads for new paying customers lies at the heart of the visionary SpaceX CEO Elon Musk’s strategy of radically slashing future launch costs and enabling a space faring civilization.

The latest attempt to launch and propulsively land the Falcon booster on a platform a sea took place on Wednesday, June 15 after the on time liftoff at 10:29 a.m. EDT (2:29 UTC) from Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida.

Successful SpaceX Falcon 9 launch of ABS/Eutelsat-2 launch on June 15, 2016, at 10:29 a.m. EDT from Space Launch Complex 40 on Cape Canaveral Air Force Station, Fl.   Credit: Ken Kremer/kenkremer.com
Successful SpaceX Falcon 9 launch of ABS/Eutelsat-2 launch on June 15, 2016, at 10:29 a.m. EDT from Space Launch Complex 40 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The 229 foot-tall (70 meter) Falcon 9 successfully accomplished its primary goal of delivering a pair of roughly 5000 pound commercial telecommunications satellites to a Geostationary Transfer Orbit (GTO) for Eutelsat based in Paris and Asia Broadcast Satellite of Bermuda and Hong Kong.

The Falcon 9 delivered the Boeing-built EUTELSAT 117 West B and ABS-2A telecommunications satellites to orbits for Latin American and Asian customers.

“Ascent phase & satellites look good,” SpaceX CEO and founder Elon Musk tweeted.

After first stage separation, SpaceX engineers attempted the secondary and experimental goal of soft landing the 15 story tall first stage booster nine minutes after liftoff, on an ocean going ‘droneship’ platform for later reuse.

OCISLY was stationed approximately 420 miles (680 kilometers) off shore and east of Cape Canaveral, Florida in the Atlantic Ocean.

However, for the first time in four tries SpaceX was not successful in safely landing and recovering the booster intact and upright.

Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL,  atop droneship platform on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

The booster basically crashed on the drone ship because it descended too quickly due to insufficient thrust from the descent engines.

The rocket apparently ran out of fuel in the final moments before droneship touchdown.

“Looks like early liquid oxygen depletion caused engine shutdown just above the deck,” Musk explained via a twitter post.

The first stage is fueled by liquid oxygen and RP-1 propellant.

Flattened SpaceX Falcon 9 first stage arrived into Port Canaveral, FL atop a droneship late Saturday, June 18 after hard landing and tipping over following successful June 15, 2016  commercial payload launch.  Credit: Julian Leek
Flattened SpaceX Falcon 9 first stage arrived into Port Canaveral, FL atop a droneship late Saturday, June 18 after hard landing and tipping over following successful June 15, 2016 commercial payload launch to orbit. Credit: Julian Leek

A SpaceX video shows a huge cloud of black smoke enveloping the booster in the final moments before the planned touchdown – perhaps soot from the burning RP-1 propellant.

In the final moments the booster is seen tipping over and crashing with unrestrained force onto the droneship deck – crushing and flattening the boosters long round core and probably the nine Merlin 1D first stage engines as well.

“But booster rocket had a RUD on droneship,” Musk noted. RUD stands for rapid unscheduled disassembly which usually means it was destroyed on impact. Although in this case it may be more a case of being crushed by the fall instead of a fuel related explosion.

“Looks like thrust was low on 1 of 3 landing engines. High g landings v sensitive to all engines operating at max,” Musk elaborated.

SpaceX Falocn 9 streaks to orbit across the Florida skies after Eutelsat/ABS 2A comsat  launch  on June 15, 2016 from Cape Canaveral Air Force Station, Fl.   Credit: Ken Kremer/kenkremer.com
SpaceX Falocn 9 streaks to orbit across the Florida skies after Eutelsat/ABS 2A comsat launch on June 15, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The June 15 crash follows three straight landing successes at sea – on April 8, May 6 and mostly recently on May 27 after the Thaicom-8 launch. See my onsite coverage here of the Thaicom-8 boosters return to Port Canaveral on the OCISLY droneship.

Yet this outcome was also not unexpected due to the high energy of the rocket required to deliver the primary payload to the GTO orbit.

“As mentioned at the beginning of the year, I’m expecting ~70% success rate on landings for the year,” Musk explains.

And keep in mind that the rocket recovery and recycling effort is truly a science experiment on a grand scale financed by SpaceX – and its aiming for huge dividends down the road.

“2016 is the year of experimentation.”

It’s a road that Musk hopes will one day lead to a human “City on Mars.”

Pancaked SpaceX Falcon 9 first stage arrived at night into Port Canaveral, FL atop a droneship on June 18 after hard landing at sea following successful June 15, 2016  commercial payload launch to orbit.  Credit: Lane Hermann
Pancaked SpaceX Falcon 9 first stage arrived at night into Port Canaveral, FL atop a droneship on June 18 after hard landing at sea following successful June 15, 2016 commercial payload launch to orbit. Credit: Lane Hermann

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Watch these incredible launch videos showing many different vantage points:

Video caption: SpaceX Falcon 9 launch video compilation – Eutelsat and ABS satellites launched on 06/15/2016 from Pad 40 CCAFS. Credit: Jeff Seibert

Video caption: SpaceX Falcon 9 lifts off with Eutelsat 117W/ABS-2A electric propulsion comsats on June 15, 2016 at 10:29 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from Mobius remote camera positioned at pad. Credit: Ken Kremer/kenkremer.com

SpaceX Set to Launch Stacked Pair of Electric Propulsion Comsats on June 15 – Watch Live

Predawn view of SpaceX Falcon 9 and Eutelsat/ABS 2A comsats on the morning of launch on June 15, 2016 from Space Launch Complex 40 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 awaits launch of Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 awaits launch of Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — Less than three weeks after their last successful launch and landing attempt involving a Thai payload, SpaceX is set to continue the firms rapid fire pace of satellite deliveries to orbit with a new mission involving a stacked pair of all-electric propulsion commercial comsats that are due to liftoff tomorrow, Wednesday morning.

Working off a hefty back log of lucrative launch contracts SpaceX is targeting Wednesday, June 15 for the launch of the Boeing-built EUTELSAT 117 West B and ABS-2A satellites for Latin American and Asian customers from Cape Canaveral Air Force Station in Florida on an upgraded Falcon 9 rocket.

SpaceX is aiming to launch at the opening of Wednesday’s launch window at 10:29 a.m. EDT (2:29 UTC) which closes at 11:13 a.m. EDT.

Two Boeing built satellies named Eutelsat SA 117 West B and ABS 2A are due to launch on June 15, 2015 atop a SpaceX Falcon 9 rocket  from Cape Canaveral, FL. Credit: SpaceX
Two Boeing built satellies named Eutelsat SA 117 West B and ABS 2A are due to launch on June 15, 2015 atop a SpaceX Falcon 9 rocket from Cape Canaveral, FL. Credit: Boeing

SpaceX most recently scored a stellar success with the double headed launch of Thaicom-8 and sea based first stage landing on May 27 – as I reported here from the Cape.

And Wednesday’s launch comes just 5 days after Saturday’s (June 11) launch from the Cape of the world’s most powerful rocket – the Delta 4 Heavy – which delivered a huge spy satellite to orbit for the NRO in support of US national defense.

Indeed what makes this flight especially interesting is that the satellites are based on Boeing’s 702SP series program and were the first all-electric propulsion satellites when Boeing introduced it in 2012, a Boeing spokesperson Joanna Climer told Universe Today.

The 229 foot-tall (70 meter) Falcon 9 will deliver the roughly 5000 pound commercial telecommunications satellites to a Geostationary Transfer Orbit (GTO) for Eutelsat based in Paris and Asia Broadcast Satellite of Bermuda and Hong Kong.

SpaceX Falcon 9 poised for launch on June 15, 2016 from Cape Canaveral Air Force Station, Fl.   Credit: Julian Leek
SpaceX Falcon 9 poised for launch on June 15, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

For the fourth time in a row, the spent first stage booster will again attempt to propulsively soft land on a platform at sea some nine minutes later.

You can watch the Falcon launch live on Wednesday via a special live webcast directly from SpaceX HQ in Hawthorne, Ca.

The SpaceX webcast will be available starting about 20 minutes before liftoff, at approximately 10:09 a.m. EDT at SpaceX.com/webcast

The two stage Falcon 9 rocket has a 44-minute long launch window that extends until 11:13 a.m. EDT on Wednesday, June 15.

The path to launch was cleared after SpaceX engineers successfully carried out a brief static fire test of the first stages engines with the rocket erect at pad 40. The customary test lasts a few seconds and was conducted headless – without the two satellites bolted on top.

Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL,  atop droneship platform on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

The vertically stacked pair of comsats are “very similar, but not identical,” Climer told me.

They are already encased inside the Falcon 9 payload fairing and stacked in a Boeing-patented and customized interface configuration – as seen in the photo herein.

They were tested at the Boeing Satellite Development Center in El Segundo, Calif., to ensure they could withstand the rigors of the launch environment. They have a design lifetime of a minimum of 15 years.

“They vary slightly in mass, but have similar payload power. The satellite on top weighs less than the one on the bottom.”

The Eutelsat satellite is carrying a hosted payload for the FAA.

They will detached and separate from one another in space. The top satellite will separate first while the pair are still attached to the second stage. Then the bottom satellite will detach completing the spacecraft separation event.

They will be deployed at about 30 minutes and 35 minutes after liftoff.

Eutelsat 117 West B will provide Latin America with video, data, government and mobile services for Paris-based Eutelsat.

ABS 2A will distribute direct-to-home television, mobile and maritime communications services across Russia, India, the Middle East, Africa, Southeast Asia and the Indian Ocean region for Asia Broadcast Satellite of Bermuda and Hong Kong.

The satellites have no chemical thrusters. They will maneuver to their intended orbit entirely using a use xenon-based electric thruster propulsion system known as XIPS.

XIPS stands for xenon-ion propulsion system.

“XIPS uses the impulse generated by a thruster ejecting electrically charged particles at high velocities. XIPS requires only one propellant, xenon, and does not require any chemical propellant to generate thrust,” according to Boeing officials.

“XIPS is used for orbit raising and station-keeping for the 702SP series.”

Diagram of the Xenon propulsion system aboard the Boeing-built EUTELSAT 117 West B and ABS-2A satellites.  Credit: Boeing
Diagram of the Xenon propulsion system aboard the Boeing-built EUTELSAT 117 West B and ABS-2A satellites. Credit: Boeing

The ASDS drone ship landing platform known as “Of Course I Still Love You” or OCISLY was already dispatched several days ago.

It departed Port Canaveral for the landing zone located approximately 420 miles (680 kilometers) off shore and east of Cape Canaveral, Florida surrounded by the vastness of the Atlantic Ocean.

As I witnessed and reported here first hand, the Thaicom-8 first stage arrived on OCISLY six days after the ocean landing, in a tilted configuration. It was craned off the drone ship onto a ground support cradle two days later.

Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Atlas and Delta rockets, SpaceX Falcon 9 rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 14/15: “ULA Delta 4 Heavy spy satellite, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Up close view of landing legs at base of SpaceX Falcon 9 that launched on June 15, 2016 from Cape Canaveral Air Force Station, Fl.   Credit: Lane Hermann
Up close view of landing legs at base of SpaceX Falcon 9 that launched on June 15, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann
Logo for EUTELSAT 117 West B and ABS-2A satellite mission launch. Credit: SpaceX
Logo for EUTELSAT 117 West B and ABS-2A satellite mission launch. Credit: SpaceX

Surveillance Satellite Set for June 9 Launch on Mighty Delta 4 Heavy

Sun rises behind Delta 4 Heavy launch of NROL-15 for the NRO on June 29, 2012 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com
Sun rises behind Delta 4 Heavy launch of  NROL-15 for the NRO on June 29, 2012 from Cape Canaveral Air Force Station at Space Launch Complex-37.  Credit: Ken Kremer/kenkremer.com
Sun rises behind Delta 4 Heavy launch of NROL-15 for the NRO on June 29, 2012 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL, FL — A classified surveillance satellite set to fortify the reconnaissance capabilities of America’s spy masters is now scheduled to launch this Thursday afternoon, June 9, atop America’s most powerful rocket – the Delta 4 Heavy.

Lift off of the United Launch Alliance (ULA) Delta 4 Heavy carrying the classified NROL-37 spy satellite for the National Reconnaissance Office (NRO) on Thursday, June 9 is slated for 1:59 p.m. EDT from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

This follows a four day delay from June 5 to deal with a last minute and unspecified payload issue.

“Spacecraft, rocket and support systems are ready!” tweeted the NRO.

Although almost everything about the clandestine payload, its mission, purpose and goals are classified top secret, it is certainly vital to America’s national security.

We do know that NROL-37 will be launched for the NRO on an intelligence gathering mission in support of US national defense.

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

The NRO runs a vast fleet of powerful orbital assets hosting a multitude of the most advanced, wide ranging and top secret capabilities.

The payload is named NROL-37 and will be carried to an undisclosed orbit, possibly geostationary, by the triple barreled ULA Delta 4 Heavy rocket – currently the largest and most powerful rocket in the world.

It is manufactured and launched by ULA as part of the Delta rocket family. This includes the Delta 4 Medium which can launch with strap on solid rocket boosters. ULA also builds and launches the Atlas V rocket family.

Delta 4 Heavy cutaway diagram. Credit: ULA
Delta 4 Heavy cutaway diagram. Credit: ULA

To date nine NRO payloads have flown on Delta 4 rockets. NROL-37 will be the 32nd Delta IV mission since the vehicle’s inaugural launch.

The NRO was formed in response to the Soviet launch of Sputnik and secretly created on September 6, 1961.

“The purpose is overseeing all satellite and overflight reconnaissance projects whether overt or covert. The existence of the organization is no longer classified today, but we’re still pressing to perform the functions necessary to keep American citizens safe,” according to the official NRO website.

Precisely because this is a launch of the mighty triple barreled Delta 4 Heavy, the view all around is sure to be spectacular and is highly recommended – in case you are in the Florida Space Coast area or surrounding regions.

One thing for sure is the top secret payload is huge and weighty since it requires the heaviest of the heavies to blast off.

Watch this ULA video showing the mating of the classified reconnaissance payload to the rocket.

Video Caption: The NROL-37 payload is mated to a Delta IV Heavy rocket inside the Mobile Service Tower or MST at Cape Canaveral Air Force Station’s Space Launch Complex-37. Credit: ULA

Another unclassified aspect we know about this flight is that the weather forecast is rather iffy.

The official Air Forces prognosis calls for only a 40% chance of favorable weather conditions.

The primary concerns are for Anvil Clouds, Cumulus Clouds and Lightning.

In case of a scrub for any reason related to technical or weather issues, the next launch opportunity is 48 hours later on Saturday. June 11.

The weather odds rise significantly to an 80% chance of favorable weather conditions on June 11.

Somewhat surprisingly ULA has just announced the launch time – which is planned for 1:59 p.m. EDT (1759 GMT).

And you can even watch a ULA broadcast which starts 20 minutes prior to the given launch time at 1:39 p.m. EDT.

Webcast link: http://bit.ly/div_nrol37

The June 9 launch of the ULA Delta 4 Heavy carrying the classified NROL-37 spy satellite is planned for 1:59 p.m.  EDT.  Broadcast starts at 1:39 p.m. EDT  Watch the live webcast:  http://bit.ly/div_nrol37
The June 9 launch of the ULA Delta 4 Heavy carrying the classified NROL-37 spy satellite is planned for 1:59 p.m. EDT. Broadcast starts at 1:39 p.m. EDT Watch the live webcast: http://bit.ly/div_nrol37

Since this is a national security launch, the exact launch time is actually classified and could easily occur later than 1:59 p.m.

The launch period extends until 6:30 p.m. EDT (2230 GMT). The actual launch window is also classified and somewhere within the launch period.

Seeing a Delta 4 Heavy soar to space is a rare treat since they launch infrequently.

The last of these to launch from the Cape was for NASA’s inaugural test flight of the Orion crew capsule on the EFT-1 launch in Dec. 5, 2014. No other rocket was powerful enough.

Inaugural Orion crew module launches at 7:05 a.m. on Delta 4 Heavy Booster from pad 37 at Cape Canaveral on Dec. 5, 2014.   Credit: Ken Kremer - kenkremer.com
Inaugural Orion crew module launches at 7:05 a.m. on Delta 4 Heavy Booster from pad 37 at Cape Canaveral on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

The Delta IV Heavy employs three Common Core Boosters (CBCs). Two serve as strap-on liquid rocket boosters (LRBs) to augment the first-stage CBC and 5-m-diameter payload fairing housing the payload.

Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37.   Credit: Ken Kremer/kenkremer.com
Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Atlas and Delta rockets, SpaceX Falcon 9 rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 8/9: “SpaceX, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Recovered SpaceX Falcon 9 ‘Lifts Off’ 2nd Time After ‘Baby Made it Home!” – Gallery

With US flag flying in background below, the base of recovered SpaceX Falcon 9 booster with 4 deployed landing legs and 9 Merlin 1 D engines is lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 after sailing at midday through Port Canaveral. The rocket successfully launched Thaicom-8 satellite on May 27, 2016 from Cape Canaveral Air Force Station, Fl and landed on sea based platform minutes later. Credit: Ken Kremer/kenkremer.com
With US flag flying in background below, the base of recovered SpaceX Falcon 9 booster with 4 deployed landing legs and 9 Merlin 1 D engines is lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 after sailing at  midday through Port Canaveral. The rocket  successfully launched Thaicom-8 satellite on May 27, 2016 from Cape Canaveral Air Force Station, Fl and landed on sea based platform minutes later.  Credit: Ken Kremer/kenkremer.com
With US flag proudly flying in background below, the base of recovered SpaceX Falcon 9 booster with 4 deployed landing legs and 9 Merlin 1 D engines is lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 after sailing at midday through Port Canaveral. The rocket successfully launched Thaicom-8 satellite on May 27, 2016 from Cape Canaveral Air Force Station, Fl and landed on sea based platform minutes later. Credit: Ken Kremer/kenkremer.com

PORT CANAVERAL, FL – The spent SpaceX Falcon 9 first stage booster that sped to space and back and landed safely at sea, ‘lifted off’ for a second time so to speak after CEO Elon Musk’s “Baby Made it Home” to her home port around lunchtime on June 2 – as I witnessed and reported here for Universe Today.

“Yay, baby made it home,” SpaceX CEO and billionaire founder Elon Musk exuberantly tweeted with a link to my port arrival story and photos showing the tilted booster radiantly floating atop the droneship landing platform.

Photos above and below from myself and colleagues capture Falcon’s 2nd ‘lift off’ – this time at dusk on June 2, via crane power as workers hoisted it off its ocean landing platform – with an American flag flying proudly below – onto a ground based work platform to carry out initial processing.

3 image sequence shows SpaceX Falcon 9 ‘lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 and moved to ground processing cradle at Port Canaveral, FL following May 27, 2016 launch/landing to deliver Thaicom-8 satellite to orbit. Credit: Ken Kremer/kenkremer.com
3 image sequence shows SpaceX Falcon 9 ‘lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 and moved to ground processing cradle at Port Canaveral, FL following May 27, 2016 launch/landing to deliver Thaicom-8 satellite to orbit. Credit: Ken Kremer/kenkremer.com

The booster triumphantly entered the waterway into Port Canaveral, Fl by way of the ocean mouth at Jetty Park pier at about 11: 45 a.m. on June 2 under clear blue skies.

It continued sailing serenely along the Port Canaveral channel – towed behind the Elsbeth III tugboat – making a picture perfect tour for lucky spectators for another 30 minutes or so until docking at the SpaceX ground processing facility.

All in all it was quite appropriately an ‘otherworldly’ scene reminiscent of a great scifi movie.

Watch this video from my photojournalist colleague Jeff Seibert.

Video caption: The SpaceX F9 booster from the Thaicom-8 launch returns to Cape Canaveral on June 2, 2016 after completing an at sea landing on the OCISLY drone ship 6 days earlier. A hard landing caused a leg to activate a crush structure and it is tilting about 4 degrees. That is half the booster tilt angle that Elon Musk expected should be recoverable. Credit: Jeff Seibert

The beaming 156-foot-tall Falcon 9 booster had propulsively landed six days earlier atop the specially designed SpaceX ‘droneship’ named “Of Course I Still Love You” or “OCISLY” less than 9 minutes after the spectacular May 27 blastoff.

The Falcon 9 was leaning some 5 degrees or so on the droneship upon which it had landed on May 27 while it was stationed approximately 420 miles (680 kilometers) off shore and east of Cape Canaveral, Florida, surrounded by the vastness of the Atlantic Ocean.

Recovered SpaceX Falcon 9 sails into Port Canaveral atop droneship on June 2, 2016. Credit: John Krauss
Recovered SpaceX Falcon 9 from Thaicom 8 mission sails into Port Canaveral atop droneship on June 2, 2016. Credit: John Krauss

After docking, SpaceX workers then spent the next few hours carefully maneuvering and attaching a pyramidal shaped metal hoisting cap by crane to the top of the 15 story tall first stage – as it was firmly secured to the deck of the droneship via multiple tie downs.

It was a delicately choreographed and cautiously carried out operation, complicated by the fact that this used, returned booster was tilted. The prior two sea landed Falcon 9 boosters landed perfectly upright in April and May.

Recovered SpaceX Falcon 9 from Thaicom 8 mission sails into Port Canaveral atop droneship on June 2, 2016. Credit: John Krauss
Recovered SpaceX Falcon 9 from Thaicom 8 mission sails into Port Canaveral atop droneship on June 2, 2016. Credit: John Krauss

Indeed a pair of technicians had to ride a cherry picker lift to the very top to help fasten the cap securely in place as it was slowly lowered in the late afternoon.

Workers then spent several more hours undoing and removing the tiedowns to the droneship deck, one by one.

Finally and with no fanfare the ‘GO’ command was suddenly given.

At dusk, Falcons 2nd ‘ascent’ began at around 8 p.m. The small group of us patiently watching and waiting all day from across the channel had no warning or advance notice. My guestimate is Falcon rose perhaps 30 to 40 feet.

It was craned over to the right and lowered onto the waiting ground based retention work platform. Altogether the whole movement took some 10 minutes.

in Port Canaveral, FL prior to craning it to ground processing cradle on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
in Port Canaveral, FL prior to craning it to ground processing cradle on June 2, 2016. Credit: Ken Kremer/kenkremer.com

The SpaceX Falcon 9 began its rapid journey to space and back roaring to life at 5:39 p.m. EDT last Friday, May 27, from Space Launch Complex-40 at Cape Canaveral Air Force Station, FL, ascending into sky blue sunshine state skies.

The Falcon 9 was carrying the Thaicom-8 telecommunications satellite to orbit as its primary goal for the commercial launch from a paying customer.

It roared to life with 1.5 million pounds of thrust from the first stage Merlin 1 D engines and successfully propelled the 7000 pound (3,100 kilograms) commercial Thai communications satellite to a Geostationary Transfer Orbit (GTO).

Landing on the droneship was a secondary goal of SpaceX’s visionary CEO and founder Elon Musk.

It was leaning due to the high speed reentry and a touchdown landing speed near the maximum sustainable by the design.

“Rocket landing speed was close to design max & used up contingency crush core, hence back & forth motion,” tweeted SpaceX CEO Elon Musk.

“Prob ok, but some risk of tipping.”

That tilting added significant extra technical efforts by the SpaceX workers to stabilize it at sea and bring it back safely and not tip over calamitously during the six day long sea voyage back to home port.

““Rocket back at port after careful ocean transit. Leaning back due to crush core being used up in landing legs,” SpaceX explained.

What is the crush core?

“Crush core is aluminum honeycomb for energy absorption in the telescoping actuator. Easy to replace (if Falcon makes it back to port),” Musk tweeted during the voyage home.

The landing leg design follows up and improves upon on what was used and learned from NASA’s Apollo lunar landers in the 1960s and 1970s.

“Falcon’s landing leg crush core absorbs energy from impact on touchdown. Here’s what it looked like on Apollo lander,” noted SpaceX

Check out this graphic tweeted by SpaceX.

Falcon's landing leg crush core absorbs energy from impact on touchdown. Here's what it looked like on Apollo lander. Credit: SpaceX
Falcon’s landing leg crush core absorbs energy from impact on touchdown. Here’s what it looked like on Apollo lander. Credit: SpaceX

Technicians started removing the quartet of landing legs on Friday. I observed the first one being detached late Friday, June 3.

Recovered SpaceX Falcon 9 from Thaicom-8 mission after craning off ‘OCISLY’ droneship to ground processing cradle at Port Canaveral, FL.  Workers had removed the first of four landing legs in this view from June 3, 2016. Credit: Ken Kremer/kenkremer.com
Recovered SpaceX Falcon 9 from Thaicom-8 mission after craning off ‘OCISLY’ droneship to ground processing cradle at Port Canaveral, FL. Workers had removed the first of four landing legs in this view from June 3, 2016. Note: NASA’s VAB in background. Credit: Ken Kremer/kenkremer.com

The booster was rotated horizontally after all the legs were removed and transported back to the SpaceX processing hangar at the Kennedy Space Center at Launch Complex 39A.

The three prior landed boosters were all moved to 39 A for thorough inspection, analysis and engine testing. One will be refurbished and recycled for reuse.

Video caption: Thaicom 8 booster is lifted from autounomous drone ship to dry land for transport on 2 June 2016. Time Lapse. Credit: USLaunchReport

Later this year, SpaceX hopes to relaunch one of the recovered first stage boosters.

The SpaceX rockets and recovery technology are all being developed so they will one day lead to establishing a ‘City on Mars’ – according to the SpaceX’s visionary CEO and founder Elon Musk.

Musk aims to radically slash the cost of launching future rockets by recycling them and using them to launch new payloads for new paying customers.

Musk hopes to launch humans to Mars by the mid-2020s.

Technicians work to attach hoisting cap to top of used SpaceX Falcon 9 from Thaicom-8 mission that was secured atop ‘OCISLY’ droneship in Port Canaveral, FL prior to craning it over to ground processing cradle on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Technicians work to attach hoisting cap to top of used SpaceX Falcon 9 from Thaicom-8 mission that was secured atop ‘OCISLY’ droneship in Port Canaveral, FL prior to craning it over to ground processing cradle on June 2, 2016. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 8/9: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Recovered SpaceX Falcon 9 basks in nighttime glow after arriving into Port Canaveral on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Recovered SpaceX Falcon 9 basks in nighttime glow after arriving into Port Canaveral on June 2, 2016. Credit: Ken Kremer/kenkremer.com
4 natural made pelicans and a manmade SpaceX Falcon 9 with 4 landing legs at Port Canaveral, FL on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
4 natural made pelicans and a manmade SpaceX Falcon 9 with 4 landing legs at Port Canaveral, FL on June 2, 2016. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
Tow boat passing in front of the used SpaceX rocket waiting offshore. Credit: Julian Leek
Tow boat passing in front of the used SpaceX rocket waiting offshore. Credit: Julian Leek
Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016. Credit: Ken Kremer/kenkremer.com

Daylight Arrival Affords Eye-popping view of Radiant SpaceX Recovered Booster Sailing Victoriously into Port Canaveral

Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com
Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL,  atop droneship platform on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

Port Canaveral, FL- The first ever daylight arrival afforded endless eye-popping views of what can only be described as a truly radiant SpaceX Falcon 9 recovered first stage booster sailing victoriously into Port Canaveral, Florida, at lunchtime today, Thursday, June 2.

The beaming 156 foot tall booster was traveling triumphantly atop the specially designed SpaceX ‘droneship’ aptly named “Of Course I Still Love You” or “OCISLY.”

Because unlike all three prior perfectly erect upright landings, this booster came to rest noticeably titled, perhaps by about 5 degrees.

It was leaning due to the high speed reentry and a touchdown landing speed near the maximum sustainable by the design.

“Rocket landing speed was close to design max,” tweeted SpaceX CEO Elon Musk.

That tilt gave it a distinctive character – compared to the other three – as well as significant extra technical work by the SpaceX workers to stabilize it at sea and bring it back safely and not tip over calamitously during the six day long sea voyage back to home port.

“Leaning back due to crush core being used up in landing legs,” Musk explained.

And since Port Canaveral and the Atlantic Ocean are public waterways, the day was filled with incredible scenes on numerous pleasure boats passing by on the seas throughout the day. Since this was the first daytime ocean arrival, there’s never been a scene quite like this.

The booster landed on “OCISLY” on May 27 while it was stationed approximately 420 miles (680 kilometers) off shore and east of Cape Canaveral, Florida, surrounded by the vastness of the Atlantic Ocean.

SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 arrives at mouth of Port Canaveral, FL on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 arrives at mouth of Port Canaveral, FL atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

It was soon towed back by the Elsbeth III tug. By Tuesday evening it had arrived some 14 miles or so offshore Cocoa Beach, Fl., in the Atlantic.

After stationkeeping for some 36 hours, the journey began anew and the the booster arrived at the mouth of Port Canaveral at about 11: 45 a.m., with a picture perfect entrance via Jetty Park pier.

It continued along the Port Canaveral channel for another 30 minutes or so until docking at the SpaceX ground facility.

Up close view of base of recovered SpaceX Falcon 9 atop droneship during arrival on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Up close view of base of recovered SpaceX Falcon 9 atop droneship during arrival on June 2, 2016. Credit: Ken Kremer/kenkremer.com

So my day was filled with endless eye candy consisting of observing ground breaking rockets and technology that will one day lead to establishing a ‘City on Mars’ – according to the SpaceX’s visionary CEO and founder Elon Musk.

This Falcon 9 began its rapid journey to space and back roaring to life at 5:39 p.m. EDT last Friday, May 27, from Space Launch Complex-40 at Cape Canaveral Air Force Station, FL, ascending into sky blue sunshine state skies.

Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016. Credit: Ken Kremer/kenkremer.com

The Falcon 9 was carrying the Thaicom-8 telecommunications satellite to orbit.

Despite long odds due to a high speed orbital delivery launch on May 27 as its primary goal, the spent Falcon 9 first stage managed to successfully carry out a rapid propulsive descent and soft landing at seas on a tiny ocean going platform.

The May 27 landing was the third straight successful landing for SpaceX at sea and the second straight landing after delivering a commercial payload to a Geostationary Transfer Orbit (GTO).

With a total of 4 recovered boosters, SpaceX is laying the path to rocket reusability and Musk’s dream of slashing launch costs – by 30% initially and much much more down the road.

Pelican Navy stands watch and greets SpaceX Naval Fleet and Falcon 9 rocket float by on barge approaching mouth of Port Canaveral, Fl, on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Pelican Navy stands watch and greets SpaceX Naval Fleet and Falcon 9 rocket float by on barge approaching mouth of Port Canaveral, Fl, on June 2, 2016. Credit: Ken Kremer/kenkremer.com

Thaicom-8 was built by aerospace competitor Orbital ATK, based in Dulles, VA. It will support Thailand’s growing broadcast industry and will provide broadcast and data services to customers in South Asia, Southeast Asia and Africa.

Thaicom-8 is the fifth operational satellite for Thaicom.

It now enters a 30-day testing phase, says Orbital ATK.

SpaceX Falcon 9 booster moving along the Port Canaveral channel after passing through mouth atop droneship platform on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 booster moving along the Port Canaveral channel after passing through mouth atop droneship platform on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

The Falcon 9 launch is the 5th this year for SpaceX.

Watch for more photos/videos of today’s arrival in port in Part 2 soon.

Watch for Ken’s continuing on site reports direct from Cape Canaveral and the SpaceX launch pad.

Tourists enjoy SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
Tourists enjoy SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Up close view of top of SpaceX Falcon 9 booster showing decal, US flag, grid fins and nitrogen cold gas thruster as it floats along the Port Canaveral channel atop droneship platform on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
Up close view of top of SpaceX Falcon 9 booster showing decal, US flag, grid fins and nitrogen cold gas thruster as it floats along the Port Canaveral channel atop droneship platform on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 2/3/8/9: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 booster moving along the Port Canaveral channel atop droneship platform with cruise ship in background nears ground docking facility on June 2, 2016 following Thaicom-8 launch on May 27, 2016. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com

Spectacular Imagery Showcases SpaceX Thaicom Blastoff as Sea Landed Booster Sails Back to Port: Photo/Video Gallery

Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

CAPE CANAVERAL AIR FORCE STATION, FL – Spectacular imagery showcasing SpaceX’s Thaicom blastoff on May 27 keeps rolling in as the firms newest sea landed booster sails merrily along back to its home port atop a ‘droneship’ landing platform.

Formally known as an Autonomous Spaceport Drone Ship (ASDS) the small flat platform is eclectically named “Of Course I Still Love You” or “OCISLY” by SpaceX Founder and CEO Elon Musk and is expected back at Port Canaveral this week.

Check out this expanding launch gallery of up close photos and videos captured by local space photojournalist colleagues and myself of Friday afternoons stunning SpaceX Falcon 9 liftoff.

The imagery shows Falcon roaring to life with 1.5 million pounds of thrust from the first stage Merlin 1 D engines and propelling a 7000 pound (3,100 kilograms) commercial Thai communications satellite to a Geostationary Transfer Orbit (GTO).

The recently upgraded Falcon 9 launched into sky blue sunshine state skies at 5:39 p.m. EDT from Space Launch Complex-40 at Cape Canaveral Air Force Station, FL, accelerating to orbital velocity and arcing eastward over the Atlantic Ocean towards the African continent and beyond.

Relive the launch via these exciting videos recorded around the pad 40 perimeter affording a “You Are There” perspective!

They show up close and wide angle views and audio recording the building crescendo of the nine mighty Merlin 1 D engines.

Video caption: Compilation of videos of SpaceX Falcon 9 launch of Thaicom 8 on 5/27/2016 from Pad 40 on CCAFS, FL as seen from multiple cameras ringing pad and media viewing site on AF base. Credit: Jeff Seibert

Watch from the ground level weeds and a zoomed in view of the umbilicals breaking away at the moment of liftoff.

Video caption: SpaceX Falcon 9 lifts off with Thaicom-8 communications satellite on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from Mobius remote camera positioned at pad. Credit: Ken Kremer/kenkremer.com

After the first and second stages separated as planned at about 2 minutes and 39 seconds after liftoff, the nosecone was deployed, separating into two halves at about T plus 3 minutes and 37 seconds.

Finally a pair of second stage firings delivered Thaicom-8 to orbit.

Onboard cameras captured all the exciting space action in real time.

When the Thai satellite was successfully deployed at T plus 31 minutes and 56 seconds exhuberant cheers instantly erupted from SpaceX mission control – as seen worldwide on the live webcast.

“Satellite deployed to 91,000 km apogee,” tweeted SpaceX CEO and founder Elon Musk.

Video caption: SpaceX – “Falcon In” “Falcon Out” – 05-27-2016 – Thaicom 8. The brand new SpaceX Falcon 9 for next launch comes thru main gate Cape Canaveral, just a few hours before Thaicom 8 launched and landed. Awesome ! Credit: USLaunchReport

Both stages of the 229-foot-tall (70-meter) Falcon 9 are fueled by liquid oxygen and RP-1 kerosene which burn in the Merlin engines.

Less than nine minutes after the crackling thunder and billowing plume of smoke and fire sent the Falcon 9 and Thaicom 8 telecommunications satellite skyward, the first stage booster successfully soft landed on a platform at sea.

Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: John Kraus
Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: John Kraus

Having survived the utterly harsh and unforgiving rigors of demanding launch environments and a daring high velocity reentry, SpaceX engineers meticulously targeted the tiny ocean going ASDS vessel.

The diminutive ocean landing platform measures only about 170 ft × 300 ft (52 m × 91 m).

“Of Course I Still Love You” is named after a starship from a novel written by Iain M. Banks.

OCISLY was stationed approximately 420 miles (680 kilometers) off shore and east of Cape Canaveral, Florida surrounded by the vastness of the Atlantic Ocean.

Because the launch was target Thaicom-8 to GTO, the first stage was traveling at some 6000 kph at the time of separation from the second stage.

Thus the booster was subject to extreme velocities and re-entry heating and a successful landing would be extremely difficult – but not impossible.

Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Just 3 weeks ago SpaceX accomplished the same sea landing feat from the same type trajectory following the launch of the Japanese JCSAT-14 on May 6.

The May 6 landing was the first fully successful sea landing from a GTO launch, brilliantly accomplished by SpaceX engineers.

With a total of 4 recovered boosters, SpaceX is laying the path to rocket reusability and Musk’s dream of slashing launch costs – by 30% initially and much much more down the road.

Thaicom-8 was built by aerospace competitor Orbital ATK, based in Dulles, VA. It will support Thailand’s growing broadcast industry and will provide broadcast and data services to customers in South Asia, Southeast Asia and Africa.

Thaicom-8 is the fifth operational satellite for Thaicom.

It now enters a 30-day testing phase, says Orbital ATK.

Launch of SpaceX Falcon 9 carrying Thaicom-8 to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

The Falcon 9 launch is the 5th this year for SpaceX.

Watch for Ken’s continuing on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: John Kraus
Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: John Kraus
SpaceX Falcon 9 awaits launch to deliver Thaicom-8 communications satellite to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
SpaceX Falcon 9 awaits launch to deliver Thaicom-8 communications satellite to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 aloft with Thaicom-8 communications satellite after afternoon liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 aloft with Thaicom-8 communications satellite after afternoon liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL on May 27, 2016. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 streaks to orbit after launch on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 streaks to orbit after launch on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Prelaunch view of SpaceX Falcon 9 awaiting launch on May 27, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Lane Hermann
Prelaunch view of SpaceX Falcon 9 awaiting launch on May 27, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann
Streak shot of SpaceX Falcon 9 launching JCSAT-14 from 1st fully successful droneship landing on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: John Kraus
Streak shot of SpaceX Falcon 9 launching JCSAT-14 from 1st fully successful droneship landing from GTO on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: John Kraus
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
 SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL.  Credit: Melissa Bayles

SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL. Credit: Melissa Bayles
 SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL.  Credit: Melissa Bayles

SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL. Credit: Melissa Bayles

Technical Glitch Postpones SpaceX Thaicom Launch/Landing to Friday May 27 – Watch Live Webcast

Upgraded SpaceX Falcon 9 awaits launch of Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL, in this file photo. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 awaits launch of Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 awaits launch of Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, Fla. – Thursday’s (May 26) planned blastoff of an upgraded SpaceX Falcon 9 rocket on a lucrative commercial mission to deliver a Thai telecommunications satellite to orbit, was postponed in the final stages of the countdown after engineers discovered a technical glitch in the booster’s second stage.

Liftoff of the two stage Falcon 9 is now planned for Friday, May 27 at 5:39 p.m. EDT from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida.

Soon after liftoff, SpaceX will again execute a sea landing attempt of the first stage booster on a platform a sea following a tough reentry trajectory.

Since the launch window extends two hours, the SpaceX launch team took the time available to work the issue and tried as best they could to resolve it.

But in the end, and more than an hour into the available window, launch controllers decided it was best to stay safe and scrub for the day at about 6:40 p.m. EST and take the opportunity to thoroughly review all the data.

“Out of an abundance of caution, launch postponed until no earlier than tomorrow [May 27] for additional data review” SpaceX said via social media accounts.

Hundreds of millions of dollars are at stake on this commercial flight slated to deliver the Thaicom-8 comsat to a Geostationary Transfer Orbit (GTO) for Thaicom PLC, a leading satellite operator in Asia.

“Falcon 9 & THAICOM 8 spacecraft remain healthy,” SpaceX tweeted.

SpaceX founder and CEO Elon Mush said that the problem was traced to an engine actuator in the second stage wich is critical for delivering Thaicom-8 to its required geostationary orbit.

“There was a tiny glitch in the motion of an upper stage engine actuator,” SpaceX CEO Musk tweeted.

“Probably not a flight risk, but still worth investigating.”

You can watch the launch live on Friday via a special live webcast from SpaceX.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 5:19 p.m. EDT- at SpaceX.com/webcast
The two stage Falcon 9 rocket has a two-hour launch window that extends until Friday, May 27 at 7:39 p.m. EDT.

The Florida weather is much less favorable than yesterday. Air Force meteorologists are predicting only a 40 percent chance of favorable weather conditions at launch time Friday. The major concerns could be violations of the Thick Cloud Layer Rule, Cumulus Cloud Rule, and Liftoff Winds.

Up close view of payload fairing of SpaceX Falcon 9 rocket delivering Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com
Up close view of payload fairing of SpaceX Falcon 9 rocket delivering Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

The backup launch opportunity is Saturday, May 28. The weather outlooks is somewhat better at a 50 percent chance of favorable conditions.

Watch this truly cool video showing the rocket rollout to pad 40, rocket erection and finally the short static fire test carried out on Tuesday May 24, 2016.

Video Caption: SpaceX – Thaicom 8 – Roll Out – Lift – Static Fire Test – 05-24-2016. Credit: USLaunchReport

Thaicom-8 was built by aerospace competitor Orbital ATK, based in Dulles, VA. It will support Thailand’s growing broadcast industry and will provide broadcast and data services to customers in South Asia, Southeast Asia and Africa.

The Falcon 9 launch is the 5th this year for SpaceX.

Tune in to the SpaceX webcast Thursday afternoon to catch all the exciting action !!

Watch for Ken’s on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

May 27: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, late evening

SpaceX Targets Thursday May 26 for Thai Comsat Launch and Tough Sea Landing – Watch Live

SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo. Credit: Ken Kremer/kenkremer
SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo.  Credit: Ken Kremer/kenkremer
SpaceX Falcon 9 rocket stands poised for launch on May 26 at Cape Canaveral Air Force Station, FL, similar to this file photo. Credit: Ken Kremer/kenkremer

CAPE CANAVERAL AIR FORCE STATION, Fla. – Just three weeks after SpaceX’s last launch from their Florida launch base, the growing and influential aerospace firm is deep into commencing their next space spectacular – targeting this Thursday, May 26, for launch of a Thai comsat followed moments later by a sea landing attempt of the booster on a tough trajectory.

SpaceX is slated to launch the Thaicom-8 telecommunications satellite atop an upgraded version of the SpaceX Falcon 9 on Thursday at 5:40 p.m. EDT from Space Launch Complex-40 at Cape Canaveral Air Force Station in Florida.

SpaceX is rapidly picking up the pace of rocket launches for their wide ranging base of commercial, government and military customers that is continuously expanding and reaping contracts and profits for the Hawthorne, Calif. based company.

This commercial mission involves lofting Thaicom-8 to a Geostationary Transfer Orbit (GTO) for Thaicom PLC, a leading satellite operator in Asia.

This also counts as the second straight GTO launch and the second straight attempt to land a rocket on a sea based platform from the highly demanding GTO launch trajectory.

Will this mission make for 3 successful Falcon 9 1st stage booster landings in a row? Tune in and find out !!

Engineers have a two-hour window to launch the Falcon 9 and deliver Thaicom to orbit.

Thaicom-8 was built by aerospace competitor Orbital ATK, based in Dulles, VA. It will support Thailand’s growing broadcast industry and will provide broadcast and data services to customers in South Asia, Southeast Asia and Africa.

The Falcon 9 launch is the 5th this year for SpaceX.

You can watch the launch live via a special live webcast from SpaceX.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 5:20 a.m. EDT at SpaceX.com/webcast

The two stage Falcon 9 rocket has a two-hour launch window that extends until Thursday, May 26 at 7:40 p.m. EDT.

Thaicom-8 communications satellite built by Orbital ATK will launch on SpaceX Falcon 9 on May 26, 2016.  The satellite has delivered to the launch site in Cape Canaveral, Florida in late April 2016.  Credit: Orbital ATK
Thaicom-8 communications satellite built by Orbital ATK will launch on SpaceX Falcon 9 on May 26, 2016. The satellite has delivered to the launch site in Cape Canaveral, Florida in late April 2016. Credit: Orbital ATK

The path to liftoff was cleared late last night the company completed the customary pre-launch static fire test of the rocket’s first stage upgraded Merlin 1D engines for several seconds at pad 40.

The nine engines on the 229 foot tall Falcon 9 rocket generate approximately 1.5 million pounds of thrust.

Engineers monitored the test and after analyzing results declared the Falcon 9 was fit to launch Thursday afternoon.

The weather currently looks very good. Air Force meteorologists are predicting a 90 percent chance of favorable weather conditions at launch time Thursday morning with a minor concern for ground winds.

The backup launch opportunity is Friday, May 27. The weather outlooks is somewhat less promising at a 70 percent chance of favorable conditions.

After the Falcon 9 rocket delivers the satellite into its targeted geosynchronous transfer orbit it will enter a 30-day testing phase, says Orbital ATK.

Following in-orbit activation and after reaching its final orbital slot, Orbital ATK will then turn over control of the satellite to Thaicom to begin normal operations.

THAICOM 8’s orbital location will be positioned at 78.5 degrees east longitude and the satellite is designed to operate for more than 15 years.

Thaicom-8 is a Ku-band satellite that offers 24 active transponders that will deliver broadcast and data services to customers in Thailand, Southeast Asia, India and Africa.

Thaicom-8 has a mass of approximately 6,800 pounds (3,100 kilograms). It is based on Orbital ATK’s flight-proven GEOStar-2TM platform.

“We built and delivered this high-quality communications satellite for Thaicom PLC two months ahead of schedule, demonstrating our ability to manufacture reliable, affordable and innovative products that exceed expectations for our customer,” said Amer Khouri, Vice President of the Commercial Satellite Business at Orbital ATK.

“As one of Asia’s leading satellite operators, we are grateful for Thaicom’s continued confidence and look forward to more successful partnerships in the future.”

Thaicom-8 will join Thaicom-6 already in orbit. It was also designed, manufactured, integrated and tested by Orbital ATK. at the firm’s state-of-the-art satellite manufacturing facility in Dulles, Virginia.

Thaicom PLC commissioned Thaicom-8 in 2014, shortly after SpaceX launched the THAICOM 6 satellite into orbit in January 2014.

Thaicom-8 mission patch artwork.  Credit: SpaceX
Thaicom-8 mission patch artwork. Credit: SpaceX

The secondary test objective of SpaceX is to land the Falcon 9 rockets first stage on an ocean going barge several hundred miles offshore in the Atlantic Ocean.

The Autonomous Spaceport Drone Ship (ASDS) barge is named “Of Course I Still Love You.”

However with this mission’s GTO destination, the first stage will be subject to extreme velocities and re-entry heating and a successful landing will be difficult.

Having said that and despite those hurdles, the last GTO mission landing attempt did succeed brilliantly following the May 6 JCSAT-14 launch.

Tune in to the SpaceX webcast Thursday afternoon to catch all the exciting action !!

Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace.  Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX.  Composite:  Ken Kremer
Composite image of first stage booster from SpaceX JCSAT-14 launch was transported horizontally to SpaceX hangar at pad 39A at the Kennedy Space Center, Florida on May 16, 2016. Credit: Jeff Seibert/AmericaSpace. Inset: Trio of SpaceX boosters inside pad 39A hangar. Credit: SpaceX. Composite: Ken Kremer

Watch for Ken’s on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

May 25/26: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Jun 2 to 5: “ULA, NRO, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings