It has been almost forty years since the Voyager 1 and 2 missions visited the Saturn system. As the probes flew by the gas giant, they were able to capture some stunning, high-resolution images of the planet’s atmosphere, its many moons, and its iconic ring system. In addition, the probes also revealed that Saturn was slowly losing its rings, at a rate that would see them gone in about 100 million years.
More recently, the Cassini orbiter visited the Saturn system and spent over 12 years studying the planet, its moons and its ring system. And according to new research based on Cassini’s data, it appears that Saturn is losing its rings at the maximum rate predicted by the Voyager missions. According to the study, Saturn’s rings are being gobbled up by the gas giant at a rate that means they could be gone in less 100 million years.
Ever since the Cassini orbiter entered the Saturn system in July of 2004, scientists and the general public have been treated to a steady stream of data about this ringed giant and its many fascinating moons. In particular, a great deal of attention was focused on Saturn’s largest moon Titan, which has many surprising Earth-like characteristics.
These include its nitrogen-rich atmosphere, the presence of liquid bodies on its surface, a dynamic climate, organic molecules, and active prebiotic chemistry. And in the latest revelation to come from the Cassini orbiter, it appears that Titan also experiences periodic dust storms. This puts it in a class that has so far been reserved for only Earth and Mars.
In 1997, the NASA/ESA Cassini-Huygens mission launched from Earth and began its long journey towards the Saturn system. In 2004, the Cassini orbiter arrived around Saturn and would spend the next thirteen years studying the gas giant, its rings, and its system of Moons. On September 15th, 2017, the mission ended when the probe entered Saturn’s upper atmosphere and burned up.
This was known as Cassini’s “Grand Finale“, which began with the probe plunging into the unexplored region that lies between Saturn’s atmosphere and its rings and culminated with live coverage of it entering the atmosphere. In honor of the mission and NASA’s outstanding coverage of its final months, NASA was recently nominated for an Emmy Award by The Academy of Television Arts & Sciences.
The award is in the category of Outstanding Original Interactive Program, which recognizes the JPL’s multi-month digital campaign that celebrated the mission’s science and engineering accomplishments – which included news, web, education, television and social media efforts. It is also a nod to the agency’s success in communicating why the spacecraft concluded its mission in the skies of Saturn.
Essentially, the spacecraft was intentionally destroyed in Saturn’s atmosphere to prevent the possibility of it contaminating any of Saturn’s moons. Throughout the thirteen years it spent studying the Saturn system, Cassini found compelling evidence for the possible existence of life on Titan and in Enceladus’ interior ocean. In addition, scientists have speculated that there may be interior oceans within Rhea and Dione.
In this respect, Cassini ended its mission the same way the Galileo probe did in 2003. After spending 8 years studying Jupiter and its system the moons, the probe crashed into the gas giant’s upper atmosphere in order to prevent any possible contamination of Europa or Ganymede, which are also thought to have an interior oceans that could support life.
The “Grand Finale” campaign began on April 26th, 2017, and continued until the craft entered Saturn’s atmosphere on Sept. 15th, 2017, with the spacecraft sending back science to the very last second. The campaign utilized several different forms of media, was interactive, and was very comprehensive, providing regular updates and vital information about the mission.
“The multi-faceted campaign included regular updates on Twitter, Facebook, Snapchat, Instagram and the Cassini mission website; multiple live social, web and TV broadcasts during which reporter and public questions were answered; a dramatic short film to communicate the mission’s story and preview its endgame; multiple 360-degree videos, including NASA’s first 360-degree livestream of a mission event from inside JPL mission control; an interactive press kit; a steady drumbeat of articles to keep fans updated with news and features about the people behind the mission; state-standards aligned educational materials; a celebration of art by amateur space enthusiasts; and software to provide real-time tracking of the spacecraft, down to its final transmission to Earth.”
The short film, titled “For Your Consideration: The NASA Cassini Grand Finale“, showcases the missions many accomplishments, pays tribute to all those who made it happen and who helped inform the public and communicate the importance of the mission.
The Primetime Emmys will be awarded be on September 17th in Los Angeles. The Creative Arts Emmys, which includes interactive awards, will be presented during a separate ceremony on Saturday, Sept. 15th, at the Microsoft Theatre in Los Angeles. Other contenders include Back to the Moon, a Google Spotlight Stories App; Blade Runner 2049: Memory Lab, Coco VR, and Spiderman Homecoming, three Oculus VR experiences.
And be sure to check out the videos, FYC: NASA Cassini Grand Finale, below:
Even though the Cassini orbiter ended its mission on of September 15th, 2017, the data it gathered on Saturn and its largest moon, Titan, continues to astound and amaze. During the thirteen years that it spent orbiting Saturn and conducting flybys of its moons, the probe gathered a wealth of data on Titan’s atmosphere, surface, methane lakes, and rich organic environment that scientists continue to pore over.
For instance, there is the matter of the mysterious “sand dunes” on Titan, which appear to be organic in nature and whose structure and origins remain have remained a mystery. To address these mysteries, a team of scientists from John Hopkins University (JHU) and the research company Nanomechanics recently conducted a study of Titan’s dunes and concluded that they likely formed in Titan’s equatorial regions.
Their study, “Where does Titan Sand Come From: Insight from Mechanical Properties of Titan Sand Candidates“, recently appeared online and has been submitted to the Journal of Geophysical Research: Planets. The study was led by Xinting Yu, a graduate student with the Department of Earth and Planetary Sciences (EPS) at JHU, and included EPS Assistant Professors Sarah Horst (Yu’s advisor) Chao He, and Patricia McGuiggan, with support provided by Bryan Crawford of Nanomechanics Inc.
To break it down, Titan’s sand dunes were originally spotted by Cassini’s radar instruments in the Shangri-La region near the equator. The images the probe obtained showed long, linear dark streaks that looked like wind-swept dunes similar to those found on Earth. Since their discovery, scientists have theorized that they are comprised of grains of hydrocarbons that have settled on the surface from Titan’s atmosphere.
In the past, scientists have conjectured that they form in the northern regions around Titan’s methane lakes and are distributed to the equatorial region by the moon’s winds. But where these grains actually came from, and how they came to be distributed in these dune-like formations, has remained a mystery. However, as Yu explained to Universe Today via email, that is only part of what makes these dunes mysterious:
“First, nobody expected to see any sand dunes on Titan before the Cassini-Huygens mission, because global circulation models predicted the wind speeds on Titan are too weak to blow the materials to form dunes. However, through Cassini we saw vast linear dune fields that covers almost 30% of the equatorial regions of Titan!
“Second, we are not sure how Titan sands are formed.Dune materials on Titan are completely different from those on Earth. On Earth, dune materials are mainly silicate sand fragments weathered from silicate rocks. While on Titan, dune materials are complex organics formed by photochemistry in the atmosphere, falling to the ground. Studies show that the dune particles are pretty big (at least 100 microns), while the photochemistry formed organic particles are still pretty small near the surface (only around 1 micron). So we are not sure how the small organic particles are transformed into the big sand dune particles (you need a million small organic particles to form one single sand particle!)
“Third, we also don’t know where the organic particles in the atmosphere are processed to become bigger to form the dune particles. Some scientists think these particles can be processed everywhere to form the dune particles, while some other researchers believe their formation need to be involved with Titan’s liquids (methane and ethane), which are currently located only in the polar regions.”
To shed light on this, Yu and her colleagues conducted a series of experiments to simulate materials being transported on both terrestrial and icy bodies. This consisted of using several natural Earth sands, such as silicate beach sand, carbonate sand and white gyspum sand. To simulate the kinds materials found on Titan, they used laboratory-produced tholins, which are molecules of methane that have been subjected to UV radiation.
The production of tholins was specifically conducted to recreate the kinds of organic aerosols and photochemistry conditions that are common on Titan. This was done using the Planetary HAZE Research (PHAZER) experimental system at Johns Hopkins University – for which the Principal Investigator is Sarah Horst. The last step consisted of using a nanoidentification technique (overseen by Bryan Crawford of Nanometrics Inc.) to study the mechanical properties of the simulated sands and tholins.
This consisted of placing the sand simulants and tholins into a wind tunnel to determine their mobility and see if they could be distributed in the same patterns. As Yu explained:
“The motivation behind the study is to try to answer the third mystery. If the dune materials are processed through liquids, which are located in the polar regions of Titan, they need to be strong enough to be transported from the poles to the equatorial regions of Titan, where most of the dunes are located. However, the tholins we produced in the lab are in extremely low amounts: the thickness of the tholin film we produced is only around 1 micron, about 1/10-1/100 of the thickness of human hair. To deal with this, we used a very intriguing and precise nanoscale technique called nanoindentation to perform the measurements. Even though the produced indents and cracks are all in nanometer scales, we can still precisely determine mechanical properties like Young’s modulus (indicator of stiffness), nanoindentation hardness (hardness), and fracture toughness (indicator of brittleness) of the thin film.”
In the end, the team determined that the organic molecules found on Titan are much softer and more brittle when compared to even the softest sands on Earth. Simply put, the tholins they produced did not appear to have the strength to travel the immense distance that lies between Titan’s northern methane lakes and the equatorial region. From this, they concluded that the organic sands on Titan are likely formed near where they are located.
“And their formation may not involve liquids on Titan, since that would require a huge transportation distance of over 2000 kilometers from the Titan’s poles to the equator,” Yu added. “The soft and brittle organic particles would be grinded to dust before they reach the equator. Our study used a completely different method and reinforced some of results inferred from Cassini observations.”
In the end, this study represents a new direction for researchers when it comes to the study of Titan and other bodies in the Solar System. As Yu explained, in the past, researchers were mostly constrained with Cassini data and modelling to answer questions about Titan’s sand dunes. However, Yu and her colleagues were able to use laboratory-produced analogs to address these questions, despite the fact that the Cassini mission is now at an end.
What’s more, this most recent study is sure to be of immense value as scientists continue to pore over Cassini’s data in anticipation of future missions to Titan. These missions aim to study Titan’s sand dunes, methane lakes and rich organic chemistry in more detail. As Yu explained:
“[O]ur results can not only help understand the origin of Titan’s dunes and sands, but also it will provide crucial information for potential future landing missions on Titan, such as Dragonfly (one of two finalists (out of twelve proposals) selected for further concept development by NASA’s New Frontiers program). The material properties of the organics on Titan can actually provide amazing clues to solve some of the mysteries on Titan.
“In a study we published last year in JGR-planets (2017, 122, 2610–2622), we found out that the interparticle forces between tholin particles are much larger than common sand on Earth, which means the organics on Titan are much more cohesive (or stickier) than silicate sands on Earth. This implies that we need a larger wind speed to blow the sand particles on Titan, which could help the modeling researchers to answer the first mystery. It also suggests that Titan sands could be formed by simple coagulation of organic particles in the atmosphere, since they are much easier to stick together. This could help understand the second mystery of Titan’s sand dunes.”
In addition, this study has implications for the study of bodies other than Titan. “We have found organics on many other solar system bodies, especially icy bodies in the outer solar system, such as Pluto, Neptune’s moon Triton, and comet 67P,” said Yu. “And some of the organics are photochemically produced similarly to Titan. And we do found wind blown features (called aeolian features) on those bodies as well, so our results could be applied to these planetary bodies as well.”
In the coming decade, multiple missions are expected to explore the moons of the outer Solar System and reveal things about their rich environments that could help shed light on the origins of life here on Earth. In addition, the James Webb Space Telescope (now expected to be deployed in 2021) will also use its advanced suit of instruments to study the planets of the Solar System in the hopes of address these burning questions.
During the 13 years and 76 days that the Cassini mission spent around Saturn, the orbiter and its lander (the Huygens probe) revealed a great deal about Saturn and its systems of moons. This is especially true of Titan, Saturn’s largest moon and one of the most mysterious objects in the Solar System. As a result of Cassini’s many flybys, scientists learned a great deal about Titan’s methane lakes, nitrogen-rich atmosphere, and surface features.
Even though Cassini plunged into Saturn’s atmosphere on September 15th, 2017, scientists are still pouring over the things it revealed. For instance, before it ended its mission, Cassini captured an image of a strange cloud floating high above Titan’s south pole, one which is composed of toxic, hybrid ice particles. This discovery is another indication of the complex organic chemistry occurring in Titan’s atmosphere and on it’s surface.
Since this cloud was invisible to the naked eye, it was only observable thanks to Cassini’s Composite Infrared Spectrometer (CIRS). This instrument spotted the cloud at an altitude of about 160 to 210 km (100 to 130 mi), far above the methane rain clouds of Titan’s troposphere. It also covered a large area near the south pole, between 75° and 85° south latitude.
Using the chemical fingerprint obtained by the CIRS instrument, NASA researchers also conducted laboratory experiments to reconstruct the chemical composition of the cloud. These experiments determined that the cloud was composed of the organic molecules hydrogen cyanide and benzene. These two chemicals appeared to have condensed together to form ice particles, rather than being layered on top of each other.
For those who have spent more than the past decade studying Titan’s atmosphere, this was a rather interesting and unexpected find. As Carrie Anderson, a CIRS co-investigator at NASA’s Goddard Space Flight Center, said in a recent NASA press statement:
“This cloud represents a new chemical formula of ice in Titan’s atmosphere. What’s interesting is that this noxious ice is made of two molecules that condensed together out of a rich mixture of gases at the south pole.”
The presence of this cloud around Titan’s southern pole is also another example of the moon’s global circulation patterns. This involves currents of warm gases being sent from the hemisphere that is experiencing summer to the hemisphere experience winter. This pattern reverse direction when the seasons change, which leads to a buildup of clouds around whichever pole is experiencing winter.
When the Cassini orbiter arrived at Saturn in 20o4, Titan’s northern hemisphere was experiencing winter – which began in 2004. This was evidenced by the buildup of clouds around its north pole, which Cassini spotted during its first encounter with the moon later than same year. Similarly, the same phenomena was taking place around the south pole near the end of Cassini’s mission.
This was consistent with seasonal changes on Titan, which take place roughly every seven Earth years – a year on Titan lasts about 29.5 Earth years. Typically, the clouds that form in Titan’s atmosphere are structured in layers, where different types of gas will condense into icy clouds at different altitudes. Which ones condense is dependent on how much vapor is present and temperatures – which become steadily colder closer to the surface.
However, at times, different types of clouds can form over a range of altitudes, or co-condense with other types of clouds. This certainly appeared to be the case when it came to the large cloud of hydrogen cyanide and benzene that was spotted above the south pole. Evidence of this cloud was derived from three sets of Titan observations made with the CIRS instrument, which took place between July and November of 2015.
The CIRS instrument works by separating infrared light into its constituent colors, and then measures the strengths of these signals at the different wavelengths to determine the presence of chemical signatures. Previously, it was used to identify the presence of hydrogen cyanide ice clouds over the south pole, as well as other toxic chemicals in the moon’s stratosphere.
As F. Michael Flasar, the CIRS principal investigator at Goddard, said:
“CIRS acts as a remote-sensing thermometer and as a chemical probe, picking out the heat radiation emitted by individual gases in an atmosphere. And the instrument does it all remotely, while passing by a planet or moon.”
However, when examining the observation data for chemical “fingerprints”, Anderson and her colleagues noticed that the spectral signatures of the icy cloud did not match those of any individual chemical. To address this, the team began conducting laboratory experiments where mixtures of gases were condensed in a chamber that simulated conditions in Titan’s stratosphere.
After testing different pairs of chemicals, they finally found one which matched the infrared signature observed by CIRS. At first, they tried letting one gas condense before the other, but found that the best results were obtained when both gases were introduced and allowed to condense at the same time. To be fair, this was not the first time that Anderson and her colleagues had discovered co-condensed ice in CIRS data.
For example, similar observations were made near the north pole in 2005, about two years after the northern hemisphere experienced its winter solstice. At that time, the icy clouds were detected at a much lower altitude (below 150 km, or 93 mi) and showed chemical fingerprints of hydrogen cyanicide and caynoacetylene – one of the more complex organic molecules in Titan’s atmosphere.
This difference between this and the latest detection of a hybrid cloud, according to Anderson, comes down to differences in seasonal variations between the north and south poles. Whereas the northern polar cloud observed in 2005 was spotted about two years after the northern winter solstice, the southern cloud Anderson and her team recently examined was spotted two years before the southern winter solstice.
In short, it is possible that the mixture of the gases was slightly different in the two case, and/or that the northern cloud had a chance to warm slightly, thus altering its composition somewhat. As Anderson explained, these observations were made possible thanks to the many years that the Cassini mission spent around Saturn:
“One of the advantages of Cassini was that we were able to flyby Titan again and again over the course of the thirteen-year mission to see changes over time. This is a big part of the value of a long-term mission.”
Additional studies will certainly be needed to determine the structure of these icy clouds of mixed composition, and Anderson and her team already have some ideas on how they would look. For their money, the researchers expect these clouds to be lumpy and disorderly, rather than well-defined crystals like the single-chemical clouds.
In the coming years, NASA scientists are sure to be spending a great deal of time and energy sorting through all the data obtained by the Cassini mission over the course of its 13-year mission. Who knows what else they will detect before they have exhausted the orbiter’s vast collections of data?