Life on Titan Could Be Smelly and Explosive

Artist concept of Methane-Ethane lakes on Titan (Credit: Copyright 2008 Karl Kofoed). Click for larger version.

[/caption]

Could there be life on Titan? If so, one astrobiologist says humans probably couldn’t be in the same room with a Titanian and live to tell about it. “Hollywood would have problems with these aliens” said Dr. William Bains. “Beam one onto the Starship Enterprise and it would boil and then burst into flames, and the fumes would kill everyone in range. Even a tiny whiff of its breath would smell unbelievably horrible. But I think it is all the more interesting for that reason. Wouldn’t it be sad if the most alien things we found in the galaxy were just like us, but blue and with tails?”

While giving an obvious nod to the recent movie “Avatar,” Bains’ research provides insight to the difficulties we might encounter – beyond cultural – if we ever meet up with alien life. There could be unintended harmful consequences for one species, or both.

Bains is working to find out just how extreme the chemistry of life can be. Life on Titan, Saturn’s largest moon, represents one of the more bizarre scenarios being studied. While images sent back by the Cassini/Huygens mission might make Titan look Earth-like and maybe even inviting, it has a thick atmosphere of frozen, orange smog. At ten times our distance from the Sun, it is a frigid place, with a surface temperature of -180 degrees Celsius. Water is permanently frozen into ice and the only liquid available is liquid methane and ethane.

So instead of water based-life (like us), life on Titan would likely be based on methane.

“Life needs a liquid; even the driest desert plant on Earth needs water for its metabolism to work. So, if life were to exist on Titan, it must have blood based on liquid methane, not water. That means its whole chemistry is radically different. The molecules must be made of a wider variety of elements than we use, but put together in smaller molecules. It would also be much more chemically reactive,” said Bains.

Additionally, Bains said a metabolism running in liquid methane would have to be built of smaller molecules than terrestrial biochemistry.

“Terrestrial life uses about 700 molecules, but to find the right 700 there is reason to suppose that you need to be able to make 10 million or more,” Bains said. “The issue is not how many molecules you can make, but whether you can make the collection you need to assemble a metabolism.”

Bains said doing such assembling is like trying to find bits of wood in a lumber-yard to make a table.

“In theory you only need 5,” he said. “But you may have a lumber-yard full of offcuts and still not find exactly the right five that fit together. So you need the potential to make many more molecules than you actually need. Thus the 6-atom chemicals on Titan would have to include much more diverse bond types and probably more diverse elements, including sulphur and phosphorus in much more diverse and (to us) unstable forms, and other elements such as silicon.”

Energy is another factor that would affect the type of life that could evolve on Titan. With Sunlight a tenth of a percent as intense on Titan’s surface as on the surface of Earth, energy is likely to be in short supply.

“Rapid movement or growth needs a lot of energy, so slow-growing, lichen-like organisms are possible in theory, but velociraptors are pretty much ruled out,” said Bains.

Whatever life may be on Titan, at least we know there won’t be a Jurassic Park.

Bains, whose research is carried out through Rufus Scientific in Cambridge, UK, and MIT in the USA, is presenting his research at the National Astronomy Meeting in Glasgow, Scotland on April 13, 2010.

Source: RAS NAM

More Jaw-Droppers from Cassini

The small moon Janus is almost hidden between the planet's rings and the larger moon Rhea.Credit: NASA/JPL/Space Science Institute

[/caption]
The Cassini mission keeps churning out the hits, and here’s a collection of some of the latest stunning images released by the CICLOPS (Cassini Imaging for Central Operations) team. Above, the small moon Janus is almost hidden between the planet’s rings and the larger moon Rhea. The northern part of Janus can be seen peeking above the rings in this image of a “mutual event” where Janus (179 kilometers, 111 miles across) moved past Rhea (1,528 kilometers, 949 miles across). Mutual event observations such as this one, in which one moon passes close to or in front of another, help scientists refine their understanding of the orbits of Saturn’s moons. Click here to see a movie of the event.

Saturn's potato-shaped moon Prometheus is rendered in three dimensions in this close-up from Cassini. Credit: NASA/JPL/Space Science Institute

Grab your 3-D glasses for this one! This 3-D view is a close-up of Saturn’s potato-shaped moon Prometheus, showing the moon’s leading hemisphere. The image was created by combining two different black and white images that were taken from slightly different viewing angles. The images are combined so that the viewer’s left and right eye, respectively and separately, see a left and right image of the black and white stereo pair when viewed through red-blue glasses.

Saturn and Enceladus. Credit: NASA/JPL/Space Science Institute

At first glance, you might think this scene simply shows a bright chunk of Saturn, along with a crescent of the moon Enceladus at top right. But a closer look at the center of the image reveals a dramatic surprise: plumes of water ice spew out from the famed fractures known as “tiger stripes” near the south pole of the moon. And one other surprise: Although it may appear that Enceladus (504 kilometers, 313 miles across) is in the background here, the moon actually is closer to the spacecraft than Saturn is. This view looks most directly toward the side of Enceladus that faces away from Saturn. North on Enceladus is up and rotated 1 degree to the left.

For more great images, check out the CICLOPS website, or NASA’s Cassini website.

Cassini Finds “Heat” and More Geysers on Enceladus

Dramatic plumes, both large and small, spray water ice out from many locations along the famed "tiger stripes" near the south pole of Saturn's moon Enceladus. Credit: NASA/JPL/Space Science Institute

[/caption]

Newly released images from last November’s close flyby over Saturn’s icy moon Enceladus the Cassini spacecraft reveal geyser jets spraying all along the prominent fractures, or “tiger stripes” that cross the moon’s south polar region. Additionally, a new detailed temperature map of one fracture reveals warmer temperatures than what was expected. “Enceladus continues to astound,” said Bob Pappalardo, Cassini project scientist at the Jet Propulsion Laboratory. “With each Cassini flyby, we learn more about its extreme activity and what makes this strange moon tick.”

The new images from the imaging science subsystem and the composite infrared spectrometer teams include the best 3-D image ever obtained of a tiger stripe fissure that sprays icy particles, water vapor and organic compounds. There are also views of regions not well-mapped previously on Enceladus, including a southern area with crudely circular tectonic patterns.

In this unique mosaic image combining high-resolution data from the imaging science subsystem and composite infrared spectrometer aboard NASA's Cassini spacecraft, pockets of heat appear along one of the mysterious fractures in the south polar region of Saturn's moon Enceladus. Image credit: NASA/JPL/GSFC/SWRI/SSI

For Cassini’s visible-light cameras, the Nov. 21, 2009 flyby provided the last look at Enceladus’ south polar surface before that region of the moon goes into 15 years of darkness, and includes the most detailed look yet at the jets.

Scientists planned to use this flyby to look for new or smaller jets not visible in previous images. In one mosaic, scientists count more than 30 individual geysers, including more than 20 that had not been seen before. At least one jet spouting prominently in previous images now appears less powerful.

“This last flyby confirms what we suspected,” said Carolyn Porco, imaging team lead based at the Space Science Institute in Boulder, Colo. “The vigor of individual jets can vary with time, and many jets, large and small, erupt all along the tiger stripes.”

A new map that combines heat data with visible-light images shows a 40-kilometer (25-mile) segment of the longest tiger stripe, known as Baghdad Sulcus. The map illustrates the correlation, at the highest resolution yet seen, between the geologically youthful surface fractures and the anomalously warm temperatures that have been recorded in the south polar region. The broad swaths of heat previously detected by the infrared spectrometer appear to be confined to a narrow, intense region no more than a kilometer (half a mile) wide along the fracture.

In these measurements, peak temperatures along Baghdad Sulcus exceed 180 Kelvin ( – 92 C, -135 F), and may be higher than 200 Kelvin (- 73 C, -100 F). These warm temperatures probably result from heating of the fracture flanks by the warm, upwelling water vapor that propels the ice-particle jets seen by Cassini’s cameras. Cassini scientists will be testing this idea by investigating how well the hot spots correspond with the jet sources.

“The fractures are chilly by Earth standards, but they’re a cozy oasis compared to the numbing 50 Kelvin (-223 C, -370 F) of their surroundings,” said John Spencer, a composite infrared spectrometer team member based at Southwest Research Institute in Boulder, Colo. “The huge amount of heat pouring out of the tiger stripe fractures may be enough to melt the ice underground. Results like this make Enceladus one of the most exciting places we’ve found in the solar system.”

Some of Cassini’s scientists infer that the warmer the temperatures are at the surface, the greater the likelihood that jets erupt from liquid. “And if true, this makes Enceladus’ organic-rich, liquid sub-surface environment the most accessible extraterrestrial watery zone known in the solar system,” Porco said.

The Nov. 21 flyby was the eighth targeted encounter with Enceladus. It took the spacecraft to within about 1,600 kilometers (1,000 miles) of the moon’s surface, at around 82 degrees south latitude.

Source: JPL

Cassini Survives Close Encounter of the Death Star Kind!

Cassini's Mimas, from 70,000 km (Credit: NASA/JPL/Space Science Institute)

[/caption]
On February 13, 2010, Cassini flew by Saturn’s moon Mimas, coming as close as 9,500 km.

It passed directly over Herschel, a giant crater whose creation almost shattered the moon … and which, in its appearance in some earlier images, earned Mimas the nickname “Death Star”, after the iconic Star Wars prop.

The Cassini team has just released some “Raw Previews” of Cassini’s close encounter; time to feast your eyes.

35,000 km-distant Herschel, from Cassini (unprocessed image; credit: NASA/JPL/Space Science Institute)

The Cassini Equinox Mission, of which the Mimas flyby is but a small part, is a joint United States and European endeavor. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The imaging team consists of scientists from the US, England, France, and Germany. The imaging operations center and team lead (Dr. C. Porco) are based at the Space Science Institute in Boulder, Colo.
Herschel, from 16,000 km above (unprocessed image; credit: NASA/JPL/Space Science Institute)

Source: CICLOPS (Cassini Imaging Central Laboratory for Operations)

Saturn’s Rings Have Gone Plaid

Saturn's plaid rings. Credit: NASA/JPL/Space Science Institute

[/caption]
Are Saturn’s rings spinning at ludicrous speeds? It appears they have gone plaid! The Cassini spacecraft has actually spied two types of waves in Saturn’s A ring: a spiral density wave on the left of the image and a more pronounced spiral bending wave near the middle. And the “plaid” look comes from the slight pixelation visible near the brightest and darkest lines, which the Cassini team says is an unavoidable result of the size of the camera’s sensor and of image processing.

And if you don’t get the “plaid” reference, go watch Spaceballs.

The image was taken in visible green light with the Cassini spacecraft narrow-angle camera on Jan. 11, 2010 at a distance of approximately 279,000 kilometers (173,000 miles) from Saturn.

Source: Cassini

More Stunning Images and Discoveries Ahead: Cassini Mission Extended to 2017

Saturn from Cassini. Image credit: NASA/JPL/SSI

[/caption]

With the new 2011 NASA budget allowing for more space science activities, the space agency has extended the Cassini mission to explore Saturn and its moons to 2017. “This is a mission that never stops providing us surprising scientific results and showing us eye popping new vistas,” said Jim Green, director of NASA’s planetary science division. “The historic traveler’s stunning discoveries and images have revolutionized our knowledge of Saturn and its moons.” This is the second mission extension for Cassini, and the new “Solstice Mission” will allow scientists to study seasonal and other long-term weather changes on the planet and its moons.

The Cassini mission will get $60 million per year to continue its study of the Saturn system.

“The extension presents a unique opportunity to follow seasonal changes of an outer planet system all the way from its winter to its summer,” said Bob Pappalardo, Cassini project scientist. “Some of Cassini’s most exciting discoveries still lie ahead.”

Cassini arrived just after Saturn’s northern winter solstice, and this extension continues until a few months past northern summer solstice in May 2017. The northern summer solstice marks the beginning of summer in the northern hemisphere and winter in the southern hemisphere.

The plumes of Enceladus as imaged by the most recent Cassini flyby. Image Credit: NASA/JPL/Space Science Institute

A complete seasonal period on Saturn has never been studied at this level of detail. The Solstice mission schedule calls for an additional 155 orbits around the planet, 54 flybys of Titan and 11 flybys of the icy moon Enceladus.

The mission extension also will allow scientists to continue observations of Saturn’s rings and the magnetic bubble around the planet known as the magnetosphere. The spacecraft will make repeated dives between Saturn and its rings to obtain in depth knowledge of the gas giant. During these dives, the spacecraft will study the internal structure of Saturn, its magnetic fluctuations and ring mass.

Cassini launched in October 1997 with the European Space Agency’s Huygens probe. The spacecraft arrived at Saturn in 2004. The probe was equipped with six instruments to study Titan, Saturn’s largest moon. Cassini’s 12 instruments have returned a daily stream of data from Saturn’s system for nearly six years.

Cassini
Artists impression of the Cassini spacecraft at Saturn. Credit: NASA

“The spacecraft is doing remarkably well, even as we endure the expected effects of age after logging 2.6 billion miles on its odometer,” said Bob Mitchell, Cassini program manager at JPL. “This extension is important because there is so much still to be learned at Saturn. The planet is full of secrets, and it doesn’t give them up easily.”

Cassini’s travel scrapbook includes more than 210,000 images; information gathered during more than 125 revolutions around Saturn; 67 flybys of Titan and eight close flybys of Enceladus. Cassini has revealed unexpected details in the planet’s signature rings, and observations of Titan have given scientists a glimpse of what Earth might have been like before life evolved.

For more info on the mission, check out the Cassini website.

Cassini Images

Launch of Cassini Orbiter and Huygens Probe on Titan IV
Launch of Cassini Orbiter and Huygens Probe on Titan IV

Here are some amazing Cassini images. There are some pictures of the spacecraft, and some pictures taken by the spacecraft.

[/caption]

Here’s a picture of the launch of Cassini and Huygens atop a Titan IV rocket. This was the beginning of a 7-year journey to travel from Earth all the way to Saturn, with a few detours along the way.

Cassini Begins Transmitting Data From Enceladus Flyby
Cassini Begins Transmitting Data From Enceladus Flyby

This is an artist’s impression of Cassini flying past Saturn’s moon Enceladus. Cassini discovered strange geysers on Enceladus, blasting water ice into space. These geysers are coming from cracks at Saturn’s south pole, and scientists think it could mean there’s an ocean of liquid water underneath the ice.

Cassini
Cassini

This is an artist’s impression of Cassini approaching Saturn. It arrived at Saturn in 2004, beginning many years of incredible research about the ringed planets and its intriguing moons.

Enceladus Near Saturn
Enceladus Near Saturn

Here’s another view of Saturn’s moon Enceladus, with Saturn itself as a backdrop. You can see Saturn’s rings at the bottom of the image, cutting a line across the photo.

Crescent Rhea Occults Crescent Saturn
Crescent Rhea Occults Crescent Saturn

You’re looking at a photo of Saturn’s moon Rhea passing in front of Saturn. Both Rhea and Saturn are cloaked in shadow.

We’ve written many articles about Cassini for Universe Today. Here’s an article about the sunlight glinting off a lake on Titan, and here are some amazing pictures of Saturn during its equinox.

If you’d like more Cassini images, check out Hubblesite’s News Releases about Saturn. And here’s a link to the homepage of NASA’s Cassini spacecraft, which is orbiting Saturn.

We’ve also recorded an episode of Astronomy Cast all about Saturn. Listen here, Episode 59: Saturn.

Scientists Find Water Ice Creates the Spokes in Saturn’s B Ring

Spokes visible in Saturn's B ring. Credit: NASA/JPL/Space Science Institute

[/caption]

The mysterious spokes that sometimes appear in Saturn’s largest ring, the B ring, have been unexplained. But new measurements from Cassini’s Visual Infrared Mapping spectrometer (VIMS) suggests the radial spokes that sometimes form across the ring are entirely composed of water ice. The existence of the spokes were unexpected and were first observed when the Voyager spacecraft flew by Saturn in 1980. When Cassini arrived at Saturn in 2004, the spokes were not visible, but later appeared in 2005; the VIMS instrument was not able to observe the spokes until 2008. Even with this new information, the spokes are still mysterious, as they appear to be a seasonal phenomenon and can become visible and then fade within a few hours. The process that creates and dissipates the spokes is unknown.

Another view from Cassini of spokes. Credit: Credit: NASA/JPL/Space Science Institute

Early hypotheses on the spokes speculated that gravitational forces and/or electrostatic repulsion between ring particles played a role in creating the spokes. One clue was that the spokes are more commonly observed when Saturn’s rings are more nearly edge on to the Sun. Other scientists had suggested ice, but believed the spokes were composed mainly of smaller ice grains. However, the new data show a large portion of the grains are larger than expected; a micrometer or more in radius.

E. D’Aversa and his team from the Institute for Interplanetary Space Physics in Rome, Italy used the VIMS instrument on Cassini to observe the infrared spectrum emitted by these spokes on July 9, 2008. These were the first measurements of the complete reflectance spectrum of the spokes in a wide spectral range (0.35–0.51 ?m). The team said that radiative transfer modeling supports a pure water ice composition for the spoke’s grains, but their size distribution is found to be wider than previously thought.

The preliminary results showed a modal value of about 1.90 ?m (reff = 3.5 ?m, veff = 0.3) and a number density of about 0.01–0.1 grains/cm3. The researchers say the unexpected abundance of micron-sized grains in the spokes may have implications for the formation models since the energy requirement increases by at least one order of magnitude. Future observations could help constrain the size as well as shed more light on the how the spokes form, evolve and change.

Paper: The spectrum of a Saturn ring spoke from Cassini/VIMS

A Double-Dose of Cassini Goodness

The Cassini mission is just a non-stop faucet of fantastic images! Here are two that were released today, for your viewing pleasure. The first image, above, is an eclipse of Saturn’s moon Tethys, which lies in the background, by Dione. The three images were each taken one minute apart.

As you can see, from Cassini’s perspective Dione passes right in front of Tethys. Make no mistake in thinking that these two Saturnian companions are close together in this shot, however; Dione, the moon in the foreground, is 2.2 million kilometers (1.4 million miles) from the Cassini spacecraft, while Tethys is 2.6 million kilometers (1.6 million miles) away.

An interesting feature of the image is how Tethys appears brighter on the side of the moon opposite the Sun. This is because Saturn, which lies out of the image to the right, is reflecting light from the Sun back onto the moon. Dione is not being backlit by Saturn from the vantage point of Cassini, so its face that is opposite the Sun appears darker.

Visible on Tethys is the Odysseus Crater, which spans a whopping 400km (240 miles). Given that Tethys is only 1,062 kilometers, or 660 miles across, the crater appears very large in comparison to the moon. It also makes the moon very much resemble the Death Star from Star Wars, don’t you think? These images were taken using Cassini’s narrow-angle camera on Nov. 28, 2009.

This second image is a synthetic aperture radar image of the surface of Saturn’s moon Titan. In the lower right and upper center of the image, the two wrinkly features are actually small Titanian mountains. What exactly causes the grooves in these mountains has still to be determined.

On Earth, the shifting of tectonic plates can form such structures, as well as the processes of water flowing, freezing, and melting.

Since Titan has an atmosphere composed mostly of methane and ethane, and experiences rain much like here on Earth, it’s quite possible that these processes are the cause of such features.

Because the illumination of this image comes from the radar on Cassini, the peaks of these formations should be the brightest. As is visible, this isn’t the case. Notice how the left side of the upper mountain in the image, and right side of the lower-right mountain are brighter. The materials that make up the darker and lighter areas are the cause for this lighting effect.

The image represents a patch of Titan’s surface 250 km (155 miles) high and 285 km (180 miles) wide, and the resolution is about 350 meters (1,150 feet) per pixel, and it was taken on December 28th, 2009.

Source: Cassini Equinox Mission, here and here.

Are We Just ‘Lucky’ to See Activity on Enceladus?

Caption: Geysers on Enceladus. Credit: NASA, JPL, Space Science Institute

One of the most exciting but unexpected discoveries of the Cassini mission is seeing the activity taking place on Saturn’s small moon Enceladus. Between the active geysers, the unusual “tiger stripes” and the surprisingly young surface near the moon’s south pole, Enceladus has surprised scientists with almost all the images and data the gathered by the spacecraft. But is the moon always active, or are we just in the right place at the right time, lucky to be catching it during an active phase? A recent paper outlines a model in which the kind of geologic eruptions now visible on Enceladus only occur every billion years or so.

“Cassini appears to have caught Enceladus in the middle of a burp,” said Francis Nimmo, a planetary scientist at the University of California Santa Cruz. “These tumultuous periods are rare and Cassini happens to have been watching the moon during one of these special epochs.”

Nimmo and co-author Craig O’Neill of Macquarie University in Sydney, Australia propose that blobs of warm ice that periodically rise to the surface and churn the icy crust on Saturn’s moon Enceladus explain the quirky heat behavior and intriguing surface of the moon’s south polar region.

The most interesting features by far in the south polar region of Enceladus are the fissures known as “tiger stripes” that spray water vapor and other particles out from the moon. While Nimmo and O’Neill’s model doesn’t link the churning and resurfacing directly to the formation of fissures and jets, it does fill in some of the blanks in the region’s history.

Enceladus. Credit: NASA/JPL/Space Science Institute

“This episodic model helps to solve one of the most perplexing mysteries of Enceladus,” said Bob Pappalardo, Cassini project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., of the research done by his colleagues. “Why is the south polar surface so young? How could this amount of heat be pumped out at the moon’s south pole? This idea assembles the pieces of the puzzle.”

But not everyone is convinced this model answers all the questions about Enceladus. Carolyn Porco, who leads the imaging team for Cassini said via Twitter regarding this paper, “Beware! Several different models out there say different things.”

About four years ago, Cassini’s composite infrared spectrometer instrument detected a heat flow in the south polar region of at least 6 gigawatts, the equivalent of at least a dozen electric power plants. This is at least three times as much heat as an average region of Earth of similar area would produce, despite Enceladus’ small size. The region was also later found by Cassini’s ion and neutral mass spectrometer instrument to be swiftly expelling argon, which comes from rocks decaying radioactively and has a well-known rate of decay.

Calculations told scientists it would be impossible for Enceladus to have continually produced heat and gas at this rate. Tidal movement – the pull and push from Saturn as Enceladus moves around the planet – cannot explain the release of so much energy.

The surface ages of different regions of Enceladus also show great diversity. Heavily cratered plains in the northern part of the moon appear to be as old as 4.2 billion years, while a region near the equator known as Sarandib Planitia is between 170 million and 3.7 billion years old. The south polar area, however, appears to be less than 100 million years old, possibly as young as 500,000 years.

O’Neill had originally developed the model for the convection of Earth’s crust. For the model of Enceladus, which has a surface completely covered in cold ice that is fractured by the tug of Saturn’s gravitational pull, the scientists stiffened up the crust. They picked a strength somewhere between that of the malleable tectonic plates on Earth and the rigid plates of Venus, which are so strong, it appears they never get sucked down into the interior.

These drawings depict explanations for the source of intense heat that has been measured coming from Enceladus' south polar region. Credit: NASA/JPL

Their model showed that heat building up from the interior of Enceladus could be released in episodic bubbles of warm, light ice rising to the surface, akin to the rising blobs of heated wax in a lava lamp. The rise of the warm bubbles would send cold, heavier ice down into the interior. (Warm is, of course, relative. Nimmo said the bubbles are probably just below freezing, which is 273 degrees Kelvin or 32 degrees Fahrenheit, whereas the surface is a frigid 80 degrees Kelvin or -316 degrees Fahrenheit.)

The model fits the activity on Enceladus when the churning and resurfacing periods are assumed to last about 10 million years, and the quiet periods, when the surface ice is undisturbed, last about 100 million to two billion years. Their model suggests the active periods have occurred only 1 to 10 percent of the time that Enceladus has existed and have recycled 10 to 40 percent of the surface. The active area around Enceladus’s south pole is about 10 percent of its surface.

Source: JPL