New Research Reveals Provides Insight into Mysterious Features on Airless Worlds

Artist's rendition of the Dawn mission on approach to the protoplanet Ceres. Credit: NASA/JPL

Between 2011 and 2018, NASA’s Dawn mission conducted extended observations of Ceres and Vesta, the largest bodies in the Main Asteroid Belt. The mission’s purpose was to address questions about the formation of the Solar System since asteroids are leftover material from the process, which began roughly 4.5 billion years ago. Ceres and Vesta were chosen because Ceres is largely composed of ice, while Vesta is largely composed of rock. During the years it orbited these bodies, Dawn revealed several interesting features on their surfaces.

This included mysterious flow features similar to those observed on other airless bodies like Jupiter’s moon Europa. In a recent study, Michael J. Poston, a researcher from the Southwest Research Institute (SWRI), recently collaborated with a team at NASA’s Jet Propulsion Laboratory to attempt to explain the presence of these features. In the paper detailing their findings, they outlined how post-impact conditions could temporarily produce liquid brines that flow along the surface, creating curved gullies and depositing debris fans along the impact craters’ walls.

Continue reading “New Research Reveals Provides Insight into Mysterious Features on Airless Worlds”

Using A Space Elevator To Get Resources Off the Queen of the Asteroid Belt

Artistic view of a possible space elevator. Credit: NASA

Here at UT, we’ve had several stories that describe the concept of a space elevator. They are designed to make it easier to get objects off Earth and into space. That, so far, has proven technically or economically infeasible, as no material is strong enough to support the structure passively, and it’s too energy-intensive to support it actively. However, it could be more viable on other worlds, such as the Moon. But what about worlds farther afield? A student team from the University of Colorado at Colorado Springs looked at the use case of a space elevator on Ceres and found that it could be done with existing technology.

Continue reading “Using A Space Elevator To Get Resources Off the Queen of the Asteroid Belt”

Ceres Probably Formed Farther out in the Solar System and Migrated Inward

This image of Ceres was taken by NASA's Dawn spacecraft on May 7, 2015, from a distance of 8,400 miles (13,600 kilometers). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

When Sicilian astronomer Giuseppe Piazzi spotted Ceres in 1801, he thought it was a planet. Astronomers didn’t know about asteroids at that time. Now we know there’s an enormous quantity of them, primarily residing in the main asteroid belt between Mars and Jupiter.

Ceres is about 1,000 km in diameter and accounts for a third of the mass in the main asteroid belt. It dwarfs most of the other bodies in the belt. Now we know that it’s a planet—albeit a dwarf one—even though its neighbours are mostly asteroids.

But what’s a dwarf planet doing in the asteroid belt?

Continue reading “Ceres Probably Formed Farther out in the Solar System and Migrated Inward”

New Images of the “Golf Ball” Asteroid Pallas

New images of Pallas reveal a "golf ball asteroid" landscape. Credit: MIT/Marsset et al.

In 1802, German astronomer Heinrich Olbers observed what he thought was a planet within the Main Asteroid Belt. In time, astronomers would come to name this body Pallas, an alternate name for the Greek warrior goddess Athena. The subsequent discovery of many more asteroids in the Main Belt would lead to Pallas being reclassified as a large asteroid, the third-largest in the Belt after Ceres and Vesta.

For centuries, astronomers have sought to get a better look at Pallas to learn more about its size, shape, and composition. As of the turn of the century, astronomers had come to conclude that it was an oblate spheroid (an elongated sphere). Thanks to a new study by an international team, the first detailed images of Pallas have finally been taken, which reveal that its shape is more akin to a “golf ball” – i.e. heavily dimpled.

Continue reading “New Images of the “Golf Ball” Asteroid Pallas”

How Do We Settle on Ceres?

Dwarf planet Ceres is shown in this false-color renderings, which highlight differences in surface materials. The image is centered on Ceres brightest spots at Occator crater. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Welcome back to our series on Settling the Solar System! Today, we take a look at the largest asteroid/planetoid in the Main Belt – Ceres!

Between the orbits of Mars and Jupiter lies the Solar System’s Main Asteroid Belt. Within this region, it is estimated that there are over 150 million objects that measure 100 meters (330 ft) or more in diameter. The largest of these is the dwarf planet Ceres (aka. 1 Ceres), the only body in the Main Belt that is large enough – 940 km (585 mi) in diameter – to have undergone hydrostatic equilibrium (become spherical).

Because of its important location and the amenities this dwarf planet itself possesses, there are those who have proposed that we establish a colony on Ceres (and even some who’ve explored the idea of terraforming it). This could serve as a base for asteroid mining ventures as well as an outpost of human civilization, one which could facilitate the expansion of humanity farther out into the Solar System.

Continue reading “How Do We Settle on Ceres?”

Ceres is a Strange Place, Including a Volcanic Peak 4,000 Meters High Made From Bubbling Salt Water, Mud and Rock

A visual image and a gravitational field image of Ceres. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Ceres, at almost 1,000 km (620 miles) in diameter, is the largest body in the asteroid belt. Between 2015 and 2018, NASA’s ion-powered Dawn spacecraft visited the dwarf planet, looking for clues to help us understand how our Solar System formed. Ceres is the first dwarf planet ever visited by a spacecraft.

Now that scientists have worked with the data from Dawn, we’re starting to see just how unusual Ceres is. One of the most shocking of Dawn’s findings is the volcano Ahuna Mons, a feature that seems out of place on this tiny world. Now scientists from the German Aerospace Center (DLR) have figured out how this strange feature formed on this intriguing little planet.

Continue reading “Ceres is a Strange Place, Including a Volcanic Peak 4,000 Meters High Made From Bubbling Salt Water, Mud and Rock”

Ceres Rolled Over at Some Point in the Past

A view of Ceres in natural colour, pictured by the Dawn spacecraft in May 2015. Credit: NASA/ JPL/Planetary Society/Justin Cowart

In 2007, the Dawn mission launched from Earth and began making its way towards two historic rendezvous in the Main Asteroid Belt. The purpose of this mission was to learn more about the history of the early Solar System by studying the two largest protoplanets in the Main Belt – Ceres and Vesta – which have remained intact since their formation.

In 2015, the Dawn mission arrived in orbit around Ceres and began sending back data that has shed light on the protoplanet’s surface, composition and interior structure. Based on mission data, Pasquale Tricarico – the senior scientist at the Planetary Science Institute (PSI) – has also determined that the Ceres also experienced an indirect polar reorientation in the past, where its pole rolled approximately 36° off-axis.

Continue reading “Ceres Rolled Over at Some Point in the Past”

Ice Volcanoes on Ceres are Still Actively Blasting out Material

The 4 km high ice volcano Ahuna Mons (top) is visible projecting above the cratered surface of the dwarf planet Ceres. Image: By NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
The 4 km high ice volcano Ahuna Mons (top) is visible projecting above the cratered surface of the dwarf planet Ceres. Image: By NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

In science, one discovery often leads to more questions and mysteries. That’s certainly true of the ice volcanoes on the dwarf planet Ceres. When the Dawn spacecraft discovered the massive cryovolcano called Ahuna Mons on the surface of Ceres, it led to more questions: How cryovolcanically active is Ceres? And, why do we only see one?

Continue reading “Ice Volcanoes on Ceres are Still Actively Blasting out Material”