First Precise Measurement of Antihydrogen

Hydrogen’s electron and proton have oppositely charged antimatter counterparts in the antihydrogen: the positron and antiproton. Image credit: NSF.

The best science — the questions that capture and compel any human being — is enshrouded in mystery. Here’s an example: scientists expect that matter and antimatter were created in equal quantities shortly after the Big Bang. If this had been the case, the two types of particles would have annihilated each other, leaving a Universe permeated by energy.

As our existence attests, that did not happen. In fact, nature seems to have a one-part in 10 billion preference for matter over antimatter. It’s one of the greatest mysteries in modern physics.

But the Large Hadron Collider is working hard, literally pushing matter to the limit, to solve this captivating mystery. This week, CERN created a beam of antihydrogen atoms, allowing scientists to take precise measurements of this elusive antimatter for the first time.

Antiparticles are identical to matter particles except for the sign of their electric charge. So while hydrogen consists of a positively charged proton orbited by a negatively charged electron, antihydrogen consists of a negatively charged antiproton orbited by a positively charged anti-electron, or a positron

While primordial antimatter has never been observed in the Universe, it’s possible to create antihydrogen in a particle accelerator by mixing positrons and low energy antiprotons.

In 2010, the ALPHA team captured and held atoms of antihydrogen for the first time. Now the team has successfully created a beam of antihydrogen particles. In a paper published this week in Nature Communications, the ALPHA team reports the detection of 80 antihydrogen atoms 2.7 meters downstream from their production.

“This is the first time we have been able to study antihydrogen with some precision,” said ALPHA spokesperson Jeffrey Hangst in a press release. “We are optimistic that ALPHA’s trapping technique will yield many such insights in the future.”

One of the key challenges is keeping antihydrogen away from ordinary matter, so that the two don’t annihilate each other. To do so, most experiments use magnetic fields to trap antihydrogen atoms long enough to study them.

However, the strong magnetic fields degrade the spectroscopic properties of the antihydrogen atoms, so the ALPHA team had to develop an innovative set-up to transfer antihydrogen atoms to a region where they could be studied, far from the strong magnetic field.

To measure the charge of antihydrogen, the ALPHA team studied the trajectories of antihydrogen atoms released from the trap in the presence of an electric field. If the antihydrogen atoms had an electric charge, the field would deflect them, whereas neutral atoms would be undeflected.

The result, based on 386 recorded events, gives a value of the antihydrogen electric charge at -1.3 x 10-8. In other words, its charge is compatible with zero to eight decimal places. Although this result comes as no surprise, since hydrogen atoms are electrically neutral, it is the first time that the charge of an antiatom has been measured to such high precision.

In the future, any detectable difference between matter and antimatter could help solve one of the greatest mysteries in modern physics, opening up a window into a new realm of science.

The paper has been published in Nature Communications.

Higgs Boson Physicists Receive 2013 Nobel Prize

This is the signature of one of 100s of trillions of particle collisions detected at the Large Hadron Collider. The combined analysis lead to the discovery of the Higgs Boson. This article describes one team in dissension with the results. (Photo Credit: CERN)

That was fast! Just one year after a Higgs Boson-like particle was found at the Large Hadron Collider, the two physicists who first proposed its existence have received the Nobel Prize in Physics for their work. François Englert (of the former Free University of Brussels in Belgium) and Peter W. Higgs (at the University of Edinburgh in the United Kingdom) received the prize officially this morning (Oct. 8.)

The Brout-Englert-Higgs (BEH) mechanism was first described in two independent papers by these physicists in 1964, and is believed to be responsible for the amount of matter a particle contains. Higgs himself said this mechanism would be visible in a massive boson (or subatomic particle), later called the Higgs boson. Check out more information on what the particle means at this past Universe Today article by editor Nancy Atikinson.

“The awarded theory is a central part of the Standard Model of particle physics that describes how the world is constructed. According to the Standard Model, everything, from flowers and people to stars and planets, consists of just a few building blocks: matter particles. These particles are governed by forces mediated by force particles that make sure everything works as it should,”  the Royal Swedish Academy of Sciences said in a statement.

The Standard Model describes the interactions of fundamental particles. The W boson, the carrier of the electroweak force, has a mass that is fundamentally relevant for many predictions, from the energy emitted by our sun to the mass of the elusive Higgs boson. Credit: Fermilab
The Standard Model describes the interactions of fundamental particles. The W boson, the carrier of the electroweak force, has a mass that is fundamentally relevant for many predictions, from the energy emitted by our sun to the mass of the elusive Higgs boson. Credit: Fermilab

“The entire Standard Model also rests on the existence of a special kind of particle: the Higgs particle. This particle originates from an invisible field that fills up all space. Even when the universe seems empty this field is there. Without it, we would not exist, because it is from contact with the field that particles acquire mass. The theory proposed by Englert and Higgs describes this process.”

A very thrilled CERN (the European Organization for Nuclear Research) noted that the Standard Model theory has been “remarkably successful”, and passed several key tests before the particle was unveiled last year in ATLAS and CMS experiments at the Large Hadron Collider.

Dark matter in the Bullet Cluster.  Otherwise invisible to telescopic views, the dark matter was mapped by observations of gravitational lensing of background galaxies. Credit: X-ray: NASA/CXC/CfA/ M.Markevitch et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al. Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.;
Dark matter in the Bullet Cluster. Otherwise invisible to telescopic views, the dark matter was mapped by observations of gravitational lensing of background galaxies. Credit: X-ray: NASA/CXC/CfA/ M.Markevitch et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al. Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.;

“The discovery of the Higgs boson at CERN last year, which validates the Brout-Englert-Higgs mechanism, marks the culmination of decades of intellectual effort by many people around the world,” stated CERN director General Rolf Heuer.

CERN added that the discovery last year was exciting, but the Higgs boson only explains only the matter that we can see. CERN is among the organizations on the hunt for dark matter and energy, forms that can’t be sensed with conventional observatories but can be seen through their effects — such as gravitational lensing.

Sources: CERN, The Royal Swedish Academy of Sciences

An “Elemental” Explanation of Dark Matter

Image from Dark Universe, showing the distribution of dark matter in the universe. Credit: AMNH

Atoms, string theory, dark matter, dark energy… there’s an awful lot about the Universe that might make sense on paper (to physicists, anyway) but is extremely difficult to detect and measure, at least with the technology available today. But at the core of science is observation, and what’s been observed of the Universe so far strongly indicates an overwhelming amount of… stuff… that cannot be observed. But just because it can’t be seen doesn’t mean it’s not there; on the contrary, it’s what we can’t see that actually makes up the majority of the Universe.

If this doesn’t make sense, that’s okay — they’re all pretty complex concepts. So in order to help non-scientists (which, like dark energy, most of the population is comprised of) get a better grasp as to what all this “dark” stuff is about, CERN scientist and spokesperson James Gillies has teamed up with TED-Ed animators to visually explain some of the Universe’s darkest secrets. Check it out above (and see more space science lessons from TED-Ed here.)

Because everything’s easier to understand with animation!

Lesson by James Gillies, animation by TED-Ed.

Will Antimatter Obey Gravity’s Pull?

What matter and antimatter might look like annihilating one another. Credit: NASA/CXC/M. Weiss

What goes up must always come down, right? Well, the European Laboratory for Particle Physics (CERN) wants to test if that principle applies to antimatter.

Antimatter, most simply speaking, is a mirror image of matter. The concept behind it is that the particles that make up matter have an opposite counterpart, antiparticles. For example, if you consider that electrons are negatively charged, an antielectron would be positively charged.

This sounds like science fiction, but as NASA says, it is “real stuff.” In past experiments, CERN’s particle accelerator has created antiprotons, positrons and even antihydrogen. Properly harnessed, antimatter could be used for applications ranging from rocketry to medicine, NASA added. But we’ll need to figure out its nature first.

Continue reading “Will Antimatter Obey Gravity’s Pull?”

The Face of Creation

The latest autotuned installment in John D. Boswell’s Symphony of Science series waxes melodic about the particle-smashing science being done with the Large Hadron Collider at CERN, in particular its search for the Higgs boson, a.k.a. the… ok, ok, I won’t say it…

“We can recreate the conditions that were present just after the beginning of the Universe.”
– Prof. Brian Cox, “The Face of Creation”


John has been entertaining science fans with his Symphony mixes since 2009, when his first video in the series — “A Glorious Dawn” featuring Carl Sagan — was released. Now John’s videos are eagerly anticipated by fans, who follow him on YouTube and on Twitter as @melodysheep.

I’d have to say my all-time favorite is “Onward to the Edge”, featuring astrophysicist Neil deGrasse Tyson, Professor Brian Cox and Carolyn Porco from the Cassini imaging team.

Terra LuminaThanks to some help from Kickstarter, John has recently released an original album, Terra Lumina, a “collection of folk/rock songs with themes including gravity, geology, photons, and the Doppler effect.” It’s a unique musical take on some of science’s most amazing discoveries, from John D. Boswell and vocalist William Crowley. Check out the video trailer here.

The album can be found on Amazon and on iTunes.

Videos via melodysheep

Stephen Hawking and CERN LHC Team Each Win $3 Million Prize

Hawking at CERN. Credit:

Stephen Hawking visited the Large Hadron Collider’s underground tunnel at Europe’s CERN particle physics research center in 2006. Hawking and seven CERN researchers receiving multimillion-dollar prizes from the Fundamental Physics Prize Foundation. Image credit: CERN

Two $3,000,000 special physics prizes have been awarded to Stephen Hawking and to seven scientists who led the effort to discover a Higgs-like particle at CERN’s Large Hadron Collider. The Fundamental Physics Prize Foundation, backed by Russian billionaire Yuri Milner announced the awards today, saying that Hawking is honored for his discovery of Hawking radiation from black holes “and his deep contributions to quantum gravity and quantum aspects of the early universe,” and that the prize money for the European Organization for Nuclear Research, or CERN, is being shared among a scientist who administered the building of the $10 billion Large Hadron Collider and six physicists who directed two teams of 3,000 scientists each.

The $3 million Fundamental Physics Prize is awarded annually by the nonprofit Fundamental Physics Prize Foundation to recognize “transformative advances in the field.” The $3 million prize may also be given at any time outside the formal nomination process “in exceptional cases,” according to the Foundation. When the Foundation’s prize intentions were announced in July of this year, Milner said, “I hope the new prize will bring long overdue recognition to the greatest minds working in the field of fundamental physics, and if this helps encourage young people to be inspired by science, I will be deeply gratified.”

The Foundation said the seven were being honored “for their leadership role in the scientific endeavor that led to the discovery of the new Higgs-like particle by the ATLAS and CMS collaborations at CERN’s Large Hadron Collider.” They will share the $3 million prize equally.

The laureates include Lyn Evans, a Welsh scientist who serves as the LHC’s project leader; Peter Jenni amd Fabiola Gianotti of the LHC’s ATLAS collaboration; and Michel Della Negra, Tejinder Singh Virdee, Guido Tonelli and Joe Incandela of the CMS collaboration.

“It is a great honour for the LHC’s achievement to be recognised in this way,” said CERN Director General Rolf Heuer in a statement. “This prize recognizes the work of everyone who has contributed to the project over many years. The Fundamental Physics Prize underlines the value of fundamental physics to society, and I am delighted that the Foundation has chosen to hold its first award ceremony at CERN.”

“I am very much pleased with the decisions of the Selection Committee,” commented Yuri Milner. “I hope that the prizes will bring further recognition to some of the most brilliant minds in the world and the great accomplishments they have produced.”

“Choosing this year’s recipients from such a large pool of spectacular nominations was a very difficult task,” said Nima Arkani-Hamed, a member of the Selection Committee. “The selected physicists have done transformative work spanning a wide range of areas in fundamental physics. I especially look forward to future breakthroughs from the first recipients of the New Horizons in Physics Prize.”

The laureates of 2013 New Horizons in Physics Prize are:

Niklas Beisert for the development of powerful exact methods to describe a quantum gauge theory and its associated string theory;

Davide Gaiotto for far-reaching new insights about duality, gauge theory, and geometry, and especially for his work linking theories in different dimensions in most unexpected ways;

Zohar Komargodski for his work on the dynamics of four-dimensional field theories. In particular, his proof of the “a-theorem” has solved a long-standing problem, leading to deep new insights.

Each of the laureates will receive $100,000.

Sources: Fundamental Physics Prize Foundation, IOP, CERN

Physicists Closing in on Understanding the Primordial Universe

Photo of the ALICE detector at CERN. Photo courtesy of CERN.

Slamming barely nothing together is bringing scientists ever-closer to understanding the weird states of matter present just milliseconds after the creation of the Universe in the Big Bang. This is according to physicists from CERN and Brookhaven National Laboratory, presenting their latest findings at the Quark Matter 2012 conference in Washington, DC.

By smashing ions of lead together within CERN’s lesser-known ALICE heavy-ion experiment, physicists said Monday that they created the hottest man-made temperatures ever. In an instant, CERN scientists recreated a quark-gluon plasma — at temperatures 38 percent hotter than a previous record 4-trillion degree plasma. This plasma is a subatomic soup and the very unique state of matter thought to have existed in the earliest moments after the Big Bang. Earlier experiments have shown these particular varieties of plasmas behave like perfect, frictionless liquids. This finding means that physicists are studying the densest and hottest matter ever created in a laboratory; 100,000 times hotter than the interior of our Sun and denser than a neutron star.

CERN’s scientists are just coming off of their July announcement of the discovery of the elusive Higgs boson.

“The field of heavy-ion physics is crucial for probing the properties of matter in the primordial universe, one of the key questions of fundamental physics that the LHC and its experiments are designed to address. It illustrates how in addition to the investigation of the recently discovered Higgs-like boson, physicists at the LHC are studying many other important phenomena in both proton–proton and lead–lead collisions,” said CERN Director-General Rolf Heuer.

According to a press release, the findings help scientists understand the “evolution of high-density, strongly interacting matter in both space and time.”

Meanwhile, scientists at Brookhaven’s Relativistic Heavy Ion Collider (RHIC), say they have observed the first glimpse of a possible boundary separating ordinary matter, composed of protons and neutrons, from the hot primordial plasma of quarks and gluons in the early Universe. Just as water exists in different phases, solid, liquid or vapor, depending on temperature and pressure, RHIC physicists are unraveling the boundary where ordinary matter starts to form from the quark gluon plasma by smashing gold ions together. Scientists are still not sure where to draw the boundary lines, but RHIC is providing the first clues.

The nuclei of today’s ordinary atoms and the primordial quark-gluon plasma, or QGP, represent two different phases of matter and interact at the most basic of Nature’s forces. These interactions are described in a theory known as quantum chromodynamics, or QCD. Findings from RHIC’s STAR and PHENIX show that the perfect liquid properties of the quark gluon plasma dominate at energies above 39 billion electron volts (GeV). As the energy dissipates, interactions between quarks and the protons and neutrons of ordinary matter begin to appear. Measuring these energies give scientists signposts pointing to the approach of a boundary between ordinary matter and the QGP.

“The critical endpoint, if it exists, occurs at a unique value of temperature and density beyond which QGP and ordinary matter can co-exist,” said Steven Vigdor, Brookhaven’s Associate Laboratory Director for Nuclear and Particle Physics, who leads the RHIC research program. “It is analogous to a critical point beyond which liquid water and water vapor can co-exist in thermal equilibrium, he said.

While Brookhaven’s particle accelerator cannot match CERN’s record-setting temperature conditions, scientists at the U.S Energy Department lab say the machine maps the “sweet spot” in this phase transition.

Image caption: The nuclear phase diagram: RHIC sits in the energy “sweet spot” for exploring the transition between ordinary matter made of hadrons and the early universe matter known as quark-gluon plasma. Courtesy of the U.S. Department of Energy’s Brookhaven National Laboratory.

John Williams is a science writer and owner of TerraZoom, a Colorado-based web development shop specializing in web mapping and online image zooms. He also writes the award-winning blog, StarryCritters, an interactive site devoted to looking at images from NASA’s Great Observatories and other sources in a different way. A former contributing editor for Final Frontier, his work has appeared in the Planetary Society Blog, Air & Space Smithsonian, Astronomy, Earth, MX Developer’s Journal, The Kansas City Star and many other newspapers and magazines.

Ping-Pong Particles: What the Higgs Does

Unless you’ve been hiding under a chondrite for the past week you’ve heard the news from CERN regarding the discovery of a new particle that exhibits “Higgs-like” qualities. Particle physics isn’t the easiest discipline to wrap one’s head around, and while we’ve recently shared some simplified explanations of what exactly a Higgs boson is, well…here’s another.

Here, BBC’s Jonathan Amos attempts to demonstrate what the Higgs field does, and what part the boson plays. Some Ping-Pong balls, a little sugar, and a cafeteria tray is all it takes to give an idea of how essential this long-sought after subatomic particle is to the Universe. (If only finding it had been that easy!)

Video: BBC News

Higgs-like Particle Discovered at CERN

This is the signature of one of 100s of trillions of particle collisions detected at the Large Hadron Collider. The combined analysis lead to the discovery of the Higgs Boson. This article describes one team in dissension with the results. (Photo Credit: CERN)

Physicists working at the Large Hadron Collider (LHC) have announced the discovery of what they called a “Higgs-like boson” — a particle that resembles the long sought-after Higgs.

“We have reached a milestone in our understanding of nature,” CERN director general Rolf Heuer told scientists and media at a conference near Geneva on July 4, 2012. “The discovery of a particle consistent with the Higgs boson opens the way to more detailed studies, requiring larger statistics, which will pin down the new particle’s properties, and is likely to shed light on other mysteries of our universe.”


Two experiments, ATLAS and CMS, presented their preliminary results, and observed a new particle in the mass region around 125-126 GeV, the expected mass range for the Higgs Boson. The results are based on data collected in 2011 and 2012, with the 2012 data still under analysis. The official results will be published later this month and CERN said a more complete picture of today’s observations will emerge later this year after the LHC provides the experiments with more data.

“We observe in our data clear signs of a new particle, at the level of 5 sigma, in the mass region around 126 GeV. The outstanding performance of the LHC and ATLAS and the huge efforts of many people have brought us to this exciting stage,” said ATLAS experiment spokesperson Fabiola Gianotti, “but a little more time is needed to prepare these results for publication.”

The discovery of the Higgs is big, in that it is the last undiscovered piece of the Standard Model that describes the fundamental make-up of the universe.

Scientists believe that the Higgs boson, named for Scottish physicist Peter Higgs, who first theorized its existence in 1964, is responsible for particle mass, the amount of matter in a particle. According to the theory, a particle acquires mass through its interaction with the Higgs field, which is believed to pervade all of space and has been compared to molasses that sticks to any particle rolling through it.

And so, in theory, the Higgs would be responsible for how particles come together to form matter, and without it, the universe would have remained a formless miss-mash of particles shooting around at the speed of light.

“It’s hard not to get excited by these results,” said CERN Research Director Sergio Bertolucci. “We stated last year that in 2012 we would either find a new Higgs-like particle or exclude the existence of the Standard Model Higgs. With all the necessary caution, it looks to me that we are at a branching point: the observation of this new particle indicates the path for the future towards a more detailed understanding of what we’re seeing in the data.”

A CERN press release says that the next step will be to determine the precise nature of the particle and its significance for our understanding of the universe.

Are its properties as expected for the long-sought Higgs boson, the final missing ingredient in the Standard Model of particle physics? Or is it something more exotic? The Standard Model describes the fundamental particles from which we, and every visible thing in the universe, are made, and the forces acting between them. All the matter that we can see, however, appears to be no more than about 4% of the total. A more exotic version of the Higgs particle could be a bridge to understanding the 96% of the universe that remains obscure. – CERN press release

“We have reached a milestone in our understanding of nature,” said CERN Director General Rolf Heuer. “The discovery of a particle consistent with the Higgs boson opens the way to more detailed studies, requiring larger statistics, which will pin down the new particle’s properties, and is likely to shed light on other mysteries of our universe.”

Positive identification of the new particle’s characteristics will take more time and more experiments. But the scientists feel that whatever form the Higgs particle takes, our knowledge of the fundamental structure of matter is about to take a major step forward.

Lead image caption: Event recorded with the CMS detector in 2012 at a proton-proton centre of mass energy of 8 TeV. The event shows characteristics expected from the decay of the SM Higgs boson to a pair of photons (dashed yellow lines and green towers). The event could also be due to known standard model background processes. Credit: CERN

Source: CERN