NASA’s Magnetospheric Multiscale Mission to Provide 1st 3-D View of Earth’s Magnetic Reconnection Process – Cleanroom visit with Bolden

NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com
Story updated[/caption]

NASA GODDARD SPACE FLIGHT CENTER, MD – NASA’s upcoming Magnetospheric Multiscale (MMS) mission is comprised of a quartet of identically instrumented observatories aimed at providing the first three-dimensional views of a fundamental process in nature known as magnetic reconnection. They were unveiled to greet NASA Administrator Charles Bolden on Monday, May 12, in a rare fully stacked arrangement inside the Goddard cleanroom.

Universe Today was on hand with NASA Administrator Bolden, Science Mission Chief John Grunsfeld and the MMS mission team at Goddard for a first hand inspection and up close look at the 20 foot tall, four spacecraft stacked configuration in the cleanroom and for briefings about the projects fundamental science goals.

“I’m visiting with the MMS team today to find out the status of this mission scheduled to fly early in 2015. It’s one of many projects here at Goddard,” NASA Administrator Bolden told me in an exclusive one-on-one interview at the MMS cleanroom.

“MMS will help us study the phenomena known as magnetic reconnection and help us understand how energy from the sun – magnetic and otherwise – affects our own life here on Earth. MMS will study what effects that process … and how the magnetosphere protects Earth.”

Magnetic reconnection is the process whereby magnetic fields around Earth connect and disconnect while explosively releasing vast amounts of energy.

Technicians work on NASA’s 20-foot-tall Magnetospheric Multiscale (MMS) mated quartet of stacked observatories in the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
Technicians work on NASA’s 20-foot-tall Magnetospheric Multiscale (MMS) mated quartet of stacked observatories in the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

MMS measurements should lead to significant improvements in models for yielding better predictions of space weather and thereby the resulting impacts for life here on Earth as well as for humans aboard the ISS and robotic satellite explorers in orbit and the heavens beyond.

The four identical spacecraft – which are still undergoing testing – were stacked in a rarely seen launch arrangement known affectionately as the “IHOP configuration” – because they look rather like a stack of luscious pancakes.

“MMS is a fundamental heliophysics science mission,” Craig Tooley told me at the MMS cleanroom. Tooley is MMS project manager at NASA Goddard.

“Unlike Hubble that uses remote sensing, MMS is like a flying laboratory ‘in situ’ that will capture events that are the major energy transfer from the sun’s magnetic field into our Earth’s space weather environment and magnetosphere.”

“These are called magnetic reconnection events that pump enormous amounts of energy into the plasma and the fields around Earth. It’s one of the main drivers of space weather and a fundamental physical process that is not very well understood,” Tooley explained.

“The spacecraft were built in-house here at Goddard and just completed vibration testing.”

MMS will launch atop an Atlas V rocket in March 2015 from Space launch Complex 41, Cape Canaveral Air Force Station, Florida.

Artist rendition of the four MMS spacecraft in orbit in Earth’s magnetic field. Credit: NASA
Artist rendition of the four MMS spacecraft in orbit in Earth’s magnetic field. Credit: NASA

The vibration testing is a major milestone and is conducted to ensure the spacecraft can withstand the most extreme vibration and dynamic loads they will experience and which occurs during liftoff inside the fairing of the Atlas V booster.

MMS is also another highly valuable NASA science mission (along with MAVEN, LADEE and others) which suffered launch delays and increased costs as a result of the US government shutdown last October 2013, Bolden confirmed to Universe Today.

“We ended up slipping beyond the original October 2014 date due to the government shutdown and [the team] being out of work for a couple of weeks. MMS is now scheduled to launch in March 2015,” Bolden told me.

“So then you are at the mercy of the launch provider.”

“The downside to slipping that far is that’s its [MMS] costing more to launch,” Bolden stated.

Each of the Earth orbiting spacecraft is outfitted with 25 science sensors to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration, and turbulence.

Magnetic reconnection occurs throughout our universe.

“The primary mission will last two years,” Tooley told me.

“Each spacecraft carries about 400 kilograms of fuel. There is a possibility to extend the mission by about a year based on fuel consumption.”

NASA Administrator Charles Bolden and Ken Kremer (Universe Today) inspect NASA’s Magnetospheric Multiscale (MMS) mated quartet of stacked spacecraft at the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden and Ken Kremer (Universe Today) inspect NASA’s Magnetospheric Multiscale (MMS) mated quartet of stacked spacecraft at the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

The spacecraft will use the Earth itself as a laboratory to unlock the mysteries of magnetic reconnection – the primary process that transfers energy from the solar wind into Earth’s magnetosphere and is responsible for geomagnetic storms.

“To understand the fundamental physics, they will fly in a pyramid-like formation and capture the magnetic reconnection events in 3-D by flying through them as they happen – that’s why we have 4 spacecraft,” Tooley explained.

“Initially they will be spaced apart by about 10 to 30 kilometers while they fly in a tetrahedron formation and scan with their booms spread out – depending on what the scientists says is the optimal configuration.”

“They fly in a highly elliptical orbit between about 7,000 and 75,000 kilometers altitude during the first half of the mission. Eventually the orbit will be extended out to about 150,000 kilometers.”

The best place to study magnetic reconnection is ‘in situ’ in Earth’s magnetosphere.

This will lead to better predictions of space weather phenomena.

NASA’s Magnetospheric Multiscale (MMS) science mission
NASA’s Magnetospheric Multiscale (MMS) science mission

Magnetic reconnection is also believed to help trigger the spectacular aurora known as the Northern or Southern lights.

Stay tuned here for Ken’s continuing MMS, Curiosity, Opportunity, SpaceX, Orbital Sciences, Boeing, Orion, LADEE, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Ken Kremer

………

Ken’s upcoming presentation: Mercy College, NY, May 19: “Curiosity and the Search for Life on Mars” and “NASA’s Future Crewed Spaceships.”

MMS Project Manager Craig Tooley (right) and Ken Kremer (Universe Today) discuss  science objectives of NASA’s upcoming Magnetospheric Multiscale mission by 20 foot tall mated quartet of stacked spacecraft at the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
MMS Project Manager Craig Tooley (right) and Ken Kremer (Universe Today) discuss science objectives of NASA’s upcoming Magnetospheric Multiscale mission by 20 foot tall mated quartet of stacked spacecraft at the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

BUDGET 2015: Ukraine Crisis Not Disrupting Russian Soyuz Flights, NASA Admin Says

Expedition 38 crew members proudly sport their national flags in this March 2014 picture from the International Space Station. Pictured (clockwise from top center) are Russian cosmonaut Oleg Kotov, commander; Japan Aerospace Exploration Agency astronaut Koichi Wakata, Russian cosmonaut Sergey Ryazanskiy, NASA astronauts Rick Mastracchio and Mike Hopkins, and Russian cosmonaut Mikhail Tyurin, all flight engineers. Credit: NASA

Astronauts are expected to leave the International Space Station on schedule next week, and training continues on the ground, despite a crisis in Ukraine that is disrupting American and Russian relations, NASA’s administrator said on Tuesday (March 4).

Russian troops moved into the Crimea region of Ukraine last week, triggering condemnation from the United States and other International Space Station partners. At least one ISS participant, Canada, has removed its ambassador from Moscow.

“Everything is nominal right now in our relationship with the Russians. We continue to monitor the situation,” said NASA administrator Charles Bolden in a conference call with reporters.

“The safety of our crews and our assets that has not changed. Safety is the No. 1 of NASA’s core values, so we are constantly doing contingency planning on the International Space Station for emergencies that might arise,” Bolden added, citing the emergency ammonia pump replacement in December as one such example.

“Those are the kinds of things we are always planning for, and in terms of the situation on the ground, we will go into contingency planning for that as the situation dictates. But right now, we don’t see any reason to do so,” he said.

Structure arms for Soyuz TMA-11M (the launching vehicle for Expedition 38) raise into place in this long-exposure photograph taken in Kazakhstan. Credit: NASA/Bill Ingalls
Structure arms for Soyuz TMA-11M (the launching vehicle for Expedition 38) raise into place in this long-exposure photograph taken in Kazakhstan. Credit: NASA/Bill Ingalls

The Russian Soyuz is currently the only way that NASA can bring humans to the space station, although the agency is developing a commercial crew program to start lifting off astronauts from American soil again in 2017. The Soyuz missions depart and return from Kazakhstan under an agreement Russia has with the former Soviet Union republic.

Expedition 38 (which includes Russia’s Oleg Kotov and Sergey Ryazanskiy, and NASA’s Michael Hopkins) is expected to depart the space station March 10. Expedition 39 is scheduled to head to the ISS March 25.

Bolden avoided questions asking what sorts of contingencies NASA would consider if tensions escalated, saying the agency would evaluate that situation if it occurs.

The administrator delivered his comments as part of a conference call concerning NASA’s 2015 budget, which would increase funding for the commercial crew program to $848.3 million, up 21% from a planned $696 million in 2014. Proposals are currently being evaluated and little was said about CCP, except to note that the amount of funding would allow the program to have “competition”, implying multiple companies will be funded.

 Russian Soyuz spacecraft, docked to the International Space Station. Credit: NASA.
Russian Soyuz spacecraft, docked to the International Space Station. Credit: NASA.

Russia was a key partner in the station’s construction from the beginning. It launched the first component (Zarya) to space in 1998, and the station today includes several other Russian modules and docking ports. Additionally, the Russians perform their own spacewalks using the Russian Orlan spacesuit. Cosmonauts also form a large percentage of ISS crews under space station utilization agreements.

NASA collaborations with Russia in space began with the Apollo-Soyuz Test Project in 1975, and expanded under an agreement that saw several shuttles dock with the Mir space station (and NASA astronauts train in Russia) in the 1990s.

How NASA Kept MAVEN’s Launch Date During The Government Shutdown

NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft on Nov. 17, 2013, the day before its launch window opened. Credit: NASA/Bill Ingalls

As NASA Social attendees gather for NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft’s date with space today, NASA administrator Charles Bolden recalled that time in October when it looked like MAVEN may have had to lose its launch window for two years because of the government shutdown.

“It was a very complicated process that we were engaged in, back in Washington, where the term used was ‘accepted activity’,” Bolden said in an interview with Universe Today.

For launch preparations to proceed during that 16-day shutdown, Bolden and other officials engaged in the mission needed to make the case that MAVEN was vital. The mission’s science focus, examining the atmosphere of Mars and tracking down the planet’s lost water, is usually what is talked about when justifying its activities to the public.

It was a different argument, however, that got MAVEN’s launch preparations on track: “imminent risk to life or property,” Bolden said, specifically with regard to its role in sending huge data files from the Curiosity and Opportunity rovers on the surface (as well as the forthcoming Mars 2020 rover, if that gets off the ground.)

Opportunity rover’s 1st mountain climbing goal is dead ahead in this up close view of Solander Point along the eroded rim of Endeavour Crater.  Opportunity will soon ascend the mountain in search of minerals signatures indicative of a past Martian habitable environment.  This navcam panoramic mosaic was assembled from raw images taken on Sol 3385 (Aug 2, 2013).  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com)
Opportunity rover’s 1st mountain climbing goal is dead ahead in this up close view of Solander Point along the eroded rim of Endeavour Crater. Opportunity will soon ascend the mountain in search of minerals signatures indicative of a past Martian habitable environment. This navcam panoramic mosaic was assembled from raw images taken on Sol 3385 (Aug 2, 2013). Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer (kenkremer.com)

“If we had lost the opportunity to launch MAVEN, we had to slip another two-year period of time, and during that period of time it was likely that the current communications relays working on Mars would die because the ones that were there were over their current design lifetime,” Bolden said, referring to the Mars Reconnaissance Orbiter and Mars Odyssey.

Launch work was halted for a couple of days, and then more time had to be spent bringing the crew back in to prepare the spacecraft, but Bolden said the parties involved were able to “make it up without any major problem.” Other programs, however, took a hit. Bolden said there has been a loss in confidence in NASA workers getting the Orion human spacecraft and next-generation Space Launch System ready for a crewed mission late this decade. Bolden cites Orion as a stepping stone for NASA’s dream of sending astronauts away from Earth, including Mars missions.

“The biggest impact, to be quite honest, was not on the program but on the people,” he said. “Their attitude towards working in the government is they’re very proud of what they do, they know they do an exceptional job, and they felt the Congress — at the time — didn’t have respect for what we do. We’re spending a lot of time now trying to repair some … morale.”

New Horizons
Artist’s conception of NASA’s New Horizons spacecraft. Amid tighter budgets, NASA is focusing on Mars and causing concern from some planetary scientists that new missions to the outer solar system are being neglected. Credit: NASA

Another one of Bolden’s tasks these days is to allay concerns in the planetary science community that the focus on Mars may be coming at a detriment to the outer planets. NASA’s planetary science budget took a big hit in fiscal 2013 and some critics say the agency’s focus now is on developing Mars missions over those to the other planets.

“My response has been, and continues to be, what we’re trying to do is we’re trying to figure out better ways” for the planetary science community to participate, Bolden said.

Characterizing the multi-billion dollar missions such as Cassini as “a thing of the past,” Bolden said the agency is now looking at creating missions that are smaller, but more technologically advanced than the behemoth missions NASA used to send when its budgets weren’t quite so tight. He added that he feels the smaller missions could still accomplish the objectives of the larger ones.

Saturn and its rings, as seen from above the planet by the Cassini spacecraft. Credit: NASA/JPL/Space Science Institute. Assembled by Gordan Ugarkovic.
Saturn and its rings, as seen from above the planet by the Cassini spacecraft that is currently at the ringed planet. Credit: NASA/JPL/Space Science Institute. Assembled by Gordan Ugarkovic.

“I would hope that the scientific community … will help us define ways that we can design and build satellites that we can fly on a more frequent basis, that cost us a little less money, so you end up getting the same amount — if not more — of data,” Bolden said. He also cited more frequent missions as a boon to inspiring younger students for science, since the big missions might have a gap of 10 or more years between them.

Bolden, a former astronaut, commanded the STS-45 mission in in 1992 that did Earth atmospheric science of its own using the payload ATLAS-1. “I think I have bored the Mars atmospheric scientists to death relating it to what we’re hoping to do with MAVEN in the upper atmosphere,” he joked, but added the science is somewhat related.

NASA hopes MAVEN will help scientists better understand “what happened with the upper atmosphere of Mars that went it to go from green and fertile, to where it is today — a cold, icy planet,” he said. “In doing so, we hope we’ll learn about our own planet.”

MAVEN’s launch window opens at 1:38 p.m. EST (6:38 p.m. UTC) today (Nov. 18). The only major issue NASA was working at the time of the interview (roughly 6 a.m. EST, or 1 p.m. UTC) was weather, which was only 60% go, Bolden said.

With Russian Meteor Fresh In Everyone’s Memory, ESA Opens An Asteroid Monitoring Center

The two main smoke trails left by the Russian meteorite as it passed over the city of Chelyabinsk. Credit: AP Photo/Chelyabinsk.ru

It’s been about three months since that infamous meteor broke up over Chelyabinsk, Russia. In that time, there’s been a lot of conversation about how we can better protect ourselves against these space rocks with a potentially fatal (from humanity’s perspective) gravitational attraction to Earth.

This week, the European Space Agency officially inaugurated a “NEO Coordination Centre” that is intended to be asteroid warning central in the European Union. It will be the hub for early warnings on near-Earth objects (hence the ‘NEO’ in the name) under ESA’s space situational awareness program.

ESA estimates that of the 600,000 asteroids and comets that orbit the Sun, about 10,000 of them are NEOs. (They define NEOs as asteroids or comets with sizes of several feet up to several tens of miles.)

NASA, of course, is also gravely concerned about the threat NEOs present. Its administrator, Charles Bolden, talked about this at a Congressional hearing about asteroids in March.

Before delving into the threat, Bolden took a metaphorical deep breath to talk about the dozens of asteroids — a meter or larger — that slam into Earth’s atmosphere each year. Most of them burn up harmlessly, and further, 80 tons of dust-like material rain on Earth daily.

A notable meteor that did cause some damage took place about 100 years ago, in 1908, when an object broke up over an isolated area in Russia and flattened trees for miles. Bolden characterized that as a statistically one-in-a-thousand year event, but added that the “real catch” is this type of event could happen at any time.

NASA, however, is seeking out those that cause a threat. It is supposed to find 90 per cent of asteroids 140 meters or larger by 2020, and is making progress towards that goal. (By comparison, the Chelyabinsk object was estimated at 17 to 20 meters.)

Nine radar images of near-Earth asteroid 2007 PA8 obtained between by NASA's 230-foot-wide (70-meter) Deep Space Network antenna. The part of the asteroid closest to the antenna is at top. Credit: NASA/JPL-Caltech
Nine radar images of near-Earth asteroid 2007 PA8 obtained between by NASA’s 230-foot-wide (70-meter) Deep Space Network antenna. The part of the asteroid closest to the antenna is at top. Credit: NASA/JPL-Caltech

So how to best monitor the threat? Bolden outlined a few ideas: crowdsourcing, coordinating with other federal agencies and making use of automatic feeds from different telescopes throughout the world (as NASA does right now.)

Bolden emphasized that none of the asteroids we have found is on a collision course with the Earth. Still, NASA and other science experts are not complacent.

In the same hearing, John Holdren — the president’s assistant on science and technology — recommended following a National Academy of Sciences report to spend upwards of $100 million a year on asteroid detection and characterization. To mitigate the threat, Holdren further recommended a visit to an asteroid by 2025, which would perhaps cost $2 billion.