KENNEDY SPACE CENTER, FL – Buildup of the first of Boeing’s CST-100 Starliner crew spaceships is ramping up at the company’s Commercial Crew and Cargo Processing Facility (C3PF) – the new spacecraft manufacturing facility at NASA’s Kennedy Space Center.
The International Space Station (ISS) achieved 15 years of a continuous human presence in orbit, as of today, Nov. 2, aboard the football field sized research laboratory ever since the first Russian/American crew of three cosmonauts and astronauts comprising Expedition 1 arrived in a Soyuz capsule at the then much tinier infant orbiting complex on Nov. 2, 2000.
Today, the space station is host to the Expedition 45 crew of six humans – from America, Russia and Japan – that very symbolically also includes the first ever crew spending one year aboard and that highlights the outposts expanding role from a research lab to a deep space exploration test bed for experiments and technologies required for sending humans on interplanetary journeys to the Martian system in the 2030s.
The ISS was only made possible by over two decades of peaceful and friendly international cooperation by the most powerful nations on Earth on a scale rarely seen.
“I believe the International Space Station should be considered for the Nobel Peace Prize,” said NASA Administrator Charles Bolden last week during remarks to the Center for American Progress in Washington, DC., on October 28, 2015.
“Exploration has taught us more than we have ever known about our Universe and our place in it.”
“The ISS has already taught us what’s possible when tens of thousands of people across 15 countries collaborate so that human beings from different nations can live and work in space together.”
“Yet, for all these accomplishments, when you consider all the possibilities ahead of us you can only reach one conclusion; We are just getting started!”
“No better place to celebrate #15YearsOnStation! #HappyBday, @space_station! Thanks for the hospitality! #YearInSpace.” tweeted NASA astronaut Scott Kelly from the ISS today along with a crew portrait.
The space station is the largest engineering and construction project in space combining the funding, hardware, knowhow, talents and crews from 5 space agencies and 15 countries – NASA, Roscomos, ESA (European Space Agency), JAXA (Japan Aerospace and Exploration Agency) and CSA (Canadian Space Agency).
The collaborative work in space has transcended our differences here on Earth and points the way forward to an optimistic future that benefits all humanity.
The station orbits at an altitude of about 250 miles (400 kilometers) above Earth. It measures 357 feet (109 meters) end-to-end and has an internal pressurized volume of 32,333 cubic feet, equivalent to that of a Boeing 747.
The uninterrupted human presence on the station all began when Expedition 1 docked at the outpost on Nov. 2, 2000, with its first residents including Commander William Shepherd of NASA and cosmonauts Sergei Krikalev and Yuri Gidzenko of Roscosmos.
For the first station trio in November 2000, the vehicle included three modules; the Zarya module and the Zvezda service module from Russia and the Unity module from the US.
Over the past 15 years, after more than 115 construction and logistics flight, the station has grown by leaps and bounds from its small initial configuration of only three pressurized modules from Russian and America into a sprawling million pound orbiting outpost sporting a habitable volume the size of a six bedroom house, with additional new modules and hardware from Europe, Japan and Canada.
The ISS has been visited by over 220 people from 17 countries.
The “1 Year ISS crew” reflects the international cooperation that made the station possible and comprises current ISS commander NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko, who are now just past the half way mark of their mission.
“Over the weekend, I called NASA astronaut Scott Kelly, who is currently halfway through his one-year mission aboard the International Space Station, to congratulate him on setting the American records for both cumulative and continuous days in space,” Bolden said in a NASA statement released today.
“I also took the opportunity to congratulate Commander Kelly — and the rest of the space station crew — for being part of a remarkable moment 5,478 days in the making: the 15th anniversary of continuous human presence aboard the space station.”
The complete Expedition 45 crew members include Station Commander Scott Kelly and Flight Engineer Kjell Lindgren of NASA, Flight Engineers Mikhail Kornienko, Oleg Kononenko and Sergey Volkov of the Russian Federal Space Agency (Roscosmos) and Flight Engineer Kimiya Yui of the Japan Aerospace Exploration Agency.
For the first nine years, the station was home to crews of two or three. Starting in 2009 the crew size was doubled to a permanent crew of six humans after the habitable volume, research facilities, equipment and supporting provisions had grown sufficiently.
“Humans have been living in space aboard the International Space Station 24-7-365 since Nov. 2, 2000. That’s 15 Thanksgivings, New Years, and holiday seasons astronauts have spent away from their families. 15 years of constant support from Mission Control Houston. And 15 years of peaceful international living in space,” says NASA.
The US contributed and built the largest number of segments of the space station, followed by Russia.
NASA’s Space Shuttles hauled the US segments aloft inside the orbiters huge payload bay, starting from the first construction mission in 1998 carrying the Unity module to the final shuttle flight STS-135 in 2011, which marked the completion of construction and retirement of the shuttles.
With the shuttle orbiters now sitting in museums and no longer flying, the Russian Soyuz capsule is the only means of transporting crews to the space station and back.
The longevity of the ISS was recently extended from 2020 to 2024 after approval from President Obama. Most of the partners nations have also agreed to the extension. Many in the space community believe the station hardware is quite resilient and hope for further extensions to 2028 and beyond.
“The International Space Station, which President Obama has extended through 2024, is a testament to the ingenuity and boundless imagination of the human spirit. The work being done on board is an essential part of NASA’s journey to Mars, which will bring American astronauts to the Red Planet in the 2030s,” says Bolden.
“For 15 years, humanity’s reach has extended beyond Earth’s atmosphere. Since 2000, human beings have been living continuously aboard the space station, where they have been working off-the-Earth for the benefit of Earth, advancing scientific knowledge, demonstrating new technologies, and making research breakthroughs that will enable long-duration human and robotic exploration into deep space.”
A key part of enabling long duration space missions to Mars is the 1 Year ISS Mission.
In coming years, additional new pressurized modules and science labs will be added by Russia and the US.
And NASA says the stations crew size will expand to seven after the US commercial Starliner and Dragon space taxis from Boeing and SpaceX start flying in 2017.
NASA is now developing the new Orion crew capsule and mammoth Space Launch System (SLS) heavy lift rocket to send astronauts to deep space destination including the Moon, asteroids and the Red Planet.
In the meantime, Kelly and his crew are also surely looking forward to the arrival of the next Orbital ATKCygnus resupply ship carrying science experiments, provisions, spare parts, food and other goodies after it blasts off from Florida on Dec. 3 – detailed in my story here.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
In the face of drastic funding cuts by the US Congress to NASA’s commercial crew program (CCP) aimed at restoring America’s indigenous launch capability to fly our astronauts to the International Space Station (ISS), NASA Administrator Charles Bolden is being forced to spend another half a billion dollars for seats on Russia’s Soyuz spacecraft instead of astronaut transport ships built by American workers in American manufacturing facilities.
The end effect of significantly slashing NASA’s Fiscal 2016 commercial crew budget request by both the US Senate and the US House is to tell NASA to ‘Buy Russian’ rather than to ‘Buy American.’
The $490 million of US taxpayer dollars will pay for six astronaut seats on the Soyuz manned capsule in 2018 and 2019 – that are now required due to uncertainty over whether the pair of new crewed transporters being built by Boeing and SpaceX for NASA will actually be available in 2017 as planned.
Furthermore the average cost per seat under the new contract with Russia rises to $81.7 million compared to about $76 million for the most recent contract, an increase of about 7 percent.
In response to the Congressional CCP budget cuts, NASA Administrator Bolden sent a letter notifying Congressional lawmakers about the agency’s new contract modifications with the Russian space agency about future crewed flights to the space station.
“I am writing to inform you that NASA, once again, has modified its current contract with the Russian government to meet America’s requirements for crew transportation services. Under this contract modification, the cost of these services to the U.S. taxpayers will be approximately $490 million,” Bolden wrote in an Aug. 5 letter to the leaders of the House and Senate committees responsible for deciding NASA’s funding.
The budget situation is completely inexplicable given the relentless pressure from Congress, led be Sen. John McCain, on the Department of Defense and US aerospace firm United Launch Alliance (ULA) to stop purchasing and using the Russian-made RD-180 engines for the 100% reliable Atlas V rocket by 2019 – as a way to punish Russian’s President Vladimir Putin and his allies.
Because on the other hand, those same congressional ‘leaders’ clearly have no hesitation whatsoever in putting money into Putin’s allies pockets via the NASA commercial crew account – at the expense of jobs for American workers and while simultaneously potentially endangering the ISS as a hedge against possible Russian launch failures. Multiple Russian and American rockets have suffered launch failures over the past year.
Boeing and SpaceX were awarded contracts by NASA Administrator Bolden in September 2014 worth $6.8 Billion to complete the development and manufacture of their privately developed CST-100 and Crew Dragon astronaut transporters under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.
The purpose of CCP is to end our “sole reliance” on the Russian Soyuz capsule and launch US astronauts on US rockets and spaceships from US soil by 2017.
With CCP we would continue to work cooperatively with the Russians to everyone’s benefit – but not be totally dependent on them.
Under NASA’s CCtCAP contract, the first orbital flights of the new ‘space taxis’ launching our astronauts to the International Space Station had been slated to blastoff in 2017. But that schedule was entirely dependent on NASA’s ability to pay both aerospace companies as they made progress on completing the contacted milestones absolutely critical to achieving flight status.
Bolden had already notified Congress in February that the new contract modification would become necessary if Congress failed to fully fund the CCP program to enable the 2017 flights.
Since the forced retirement of NASA’s trio of shuttle orbiters in 2011, all American and ISS partner astronauts have been forced to hitch a ride on the Soyuz for flights to the ISS and back.
“Our plans to return launches to American soil make fiscal sense,” Bolden said recently. “It currently costs $76 million per astronaut to fly on a Russian spacecraft. On an American-owned spacecraft, the average cost will be $58 million per astronaut.”
Instead, the Obama Administrations 2016 request for commercial crew (CCP) amounting to $1.244 Billion was dealt another blow, and slashed to only $900 million and $1.0 Billion by the Senate and House committees respectively.
And this is just the latest in a lengthy string of cuts by Congress – which has not fully funded the Administration’s CCP funding requests, since its inception in 2010.
The budget significant budget slashes amounting to 50% or more by Congress, have already forced NASA to delay the first commercial crew flights of the private ‘space taxis’ from 2015 to 2017.
“Due to their continued reductions in the president’s funding requests for the agency’s Commercial Crew Program over the past several years, NASA was forced to extend its existing contract with the Russian Federal Space Agency (Roscosmos) to transport American astronauts to the International Space Station. This contract modification is valued at about $490 million,” said NASA.
So the net effect of Congressional CCP cuts has been to prolong US sole reliance on the Russian Soyuz manned capsule at a cost to the US taxpayers of hundreds of millions of dollars.
Indeed, given the crisis in Ukraine and recent Russian launch failures, one might think the Congress would eagerly embrace wanting to reduce our total dependence on the Russians for human spaceflight.
“Unfortunately, for five years now, the Congress, while incrementally increasing annual funding, has not adequately funded the Commercial Crew Program to return human spaceflight launches to American soil this year, as planned,” Bolden’s letter explains.
“This has resulted in continued sole reliance on the Russian Soyuz spacecraft as our crew transport vehicle for American and international partner crews to the ISS.”
“In 2010, I presented to Congress a plan to partner with American industry to return launches to the United States by 2015 if provided the requested level of funding.”
So if Congress had funded the commercial crew program, the US would have launched its first human crews on the CST-100 and crew Dragon to the ISS this year – 2015.
Bolden also repeated his request to work with the leaders of Congress in the best interests of our country.
“I am asking that we put past disagreements behind us and focus our collective efforts on support for American industry – the Boeing Corporation and SpaceX – to complete construction and certification of their crew vehicles so that we can begin launching our crews from the Space Coast of Florida in 2017.”
Currently, both Boeing and SpaceX are on track to meet the 2017 objective – but only if the CCP funds are restored.
Otherwise the contracts will have to be renegotiated and progress will be severely reduced – all at added cost. Another instance of pennywise and pound foolish.
“Our Commercial Crew Transportation Capability (CCtCap) contractors are on track today to provide certified crew transportation systems in 2017,” says Bolden.
“Reductions from the FY 2016 request for Commercial Crew proposed in the House and Senate FY 2016 Commerce, Justice, Science, and Related Agencies appropriations bills would result in NASA’s inability to fund several planned CCtCap milestones in FY 2016 and would likely result in funds running out for both contractors during the spring/summer of FY 2016.”
“If this occurs, the existing fixed-price CCtCap contracts may need to be renegotiated, likely resulting in further schedule slippage and increased cost.”
Overall, it’s just a terrible state of affairs for the future of US human spaceflight, as Congress once again places partisan politics ahead of the interests of the American people.
The fact is that the commercial crew space taxis from Boeing and SpaceX are the fastest, cheapest and most efficient pathway to get our astronaut crews to the Earth orbiting space station and back.
Common sense says we must restore our independent path to the ISS – safely and as quickly as possible.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
New close-up images of a region near Pluto’s equator reveal a giant surprise — a range of youthful mountains rising as high as 11,000 feet (3,500 meters) above the surface of the icy body. Credits: NASA/JHU APL/SwRI
Story/photos expanded[/caption]
APPLIED PHYSICS LABORATORY, LAUREL, MD – Scientists leading NASA’s historic New Horizons mission to the Pluto system announced the first of what is certain to be a tidal wave of new discoveries, including the totally unexpected finding of young ice mountains at Pluto and crispy clear views of young fractures on its largest moon Charon, at a NASA media briefing today (July 15) at the Applied Physics Laboratory (APL) in Laurel, Maryland.
A treasure trove of long awaited data has begun streaming back to Mission Control at Johns Hopkins University Applied Physics Laboratory to the mouth watering delight of researchers and NASA.
With the first ever flyby of Pluto, America completed the initial up close reconnaissance of the planets in our solar system. Pluto was the last unexplored planet, building on missions that exactly started 50 years ago in 1965 when Mariner IV flew past Mars.
“Pluto New Horizons is a true mission of exploration showing us why basic scientific research is so important,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington.
“The mission has had nine years to build expectations about what we would see during closest approach to Pluto and Charon. Today, we get the first sampling of the scientific treasure collected during those critical moments, and I can tell you it dramatically surpasses those high expectations.”
Today the team announced that New Horizons has already made a totally unexpected discovery showing clear evidence of ice mountains on Pluto’s surface in the bright area informally known as the ‘big heart of Pluto.’
The new close-up image released today showed an icy mountain range near the base of the heart with peaks jutting as high as 11,000 feet (3,500 meters) above the surface, announced John Spencer, New Horizons science team co-investigator at the media briefing.
“It’s a very young surface, probably formed less than 100 million years old,’ said Spencer. “It may be active now.”
Spencer also announce that the heart shaped region will now be named “Tombaugh Reggio” in honor of Clyde Tombaugh, the American astronomer who discovered Pluto in 1930.
“We are seeing water ice.”
“I never would have imagined this!” Spencer exclaimed.
“And I’m very surprised that there are no craters in the first high resolution images.”
The finding of ice mountains has major scientific implications.
Unlike the icy moons of giant planets, Pluto cannot be heated by gravitational interactions with a much larger planetary body. Some other process must be generating the mountainous landscape, said the team.
“This may cause us to rethink what powers geological activity on many other icy worlds,” says Spencer of SwRI.
“Pluto may have internal activity. There may be geysers or cryovolcanoes,” New Horizons principal investigator Alan Stern of the Southwest Research Institute, Boulder, Colorado, said during the media briefing. However there is no evidence for them yet.
Additional high resolution images for “Tombaugh Reggio” area are being transmitted back to Earth today and will continue.
“Finding a mountain range of ice is a complete surprise,” Stern noted.
After a nine year voyage through interplanetary space, New Horizons barreled past the Pluto system on Tuesday, July 14 for a history making first ever flyby at over 31,000 mph (49,600 kph), and survived the passage by swooping barely 7,750 miles (12,500 kilometers) above the planet’s amazingly diverse surface.
The team had to wait another 12 hours for confirmation that the spacecraft lived through the daring encounter when signals were reacquired as planned at 8:53 p.m. EDT last night. Since New Horizons swung past Pluto to continue its voyage, the probe is now more than million miles outbound just 24 hours later.
The New Frontiers spacecraft was built by a team led by Stern and included researchers from SwRI and the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland. APL also operates the New Horizons spacecraft and manages the mission.
Watch for Ken’s continuing onsite coverage of the Pluto flyby on July 14 from the Johns Hopkins University Applied Physics Laboratory (APL).
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
An iconic section of the fuselage recovered from space shuttle Challenger with the American flag (left) and the flight deck windows recovered from space shuttle Columbia (right) are part of a new, permanent memorial, “Forever Remembered,” that opened on June 27, 2015 in the Space Shuttle Atlantis exhibit at the Kennedy Space Center Visitor Complex in Florida – featuring shuttle hardware and personal crew items never before on display for viewing by the public. Credit: Ken Kremer/kenkremer.com
Story/photos updated[/caption]
NASA’s two lost Shuttle crews from the searing Challenger and Columbia accidents are now memorialized in the newly opened, permanent and highly emotional “Forever Remembered” tribute display at the Kennedy Space Center Visitor Complex in Florida.
The “Forever Remembered” memorial tribute was officially opened by NASA Administrator Charles Bolden and Kennedy Space Center Director Bob Cabana, both veteran shuttle astronauts, at a very special and moving small private NASA ceremony attended by families of the 14 fallen crew members and invited members of the media including Universe Today on June 27, 2015.
“I believe that it’s important to share this story with everyone, and not just push it aside, or try to hide it,” Cabana said at the ceremony, as tears welled up in everyone present.
The shuttle tribute is located on the ground floor of the Space Shuttle Atlantis pavilion at the Kennedy Space Center Visitor Complex and features shuttle orbiter hardware recovered from both the Challenger STS-51L and Columbia STS-107 accidents, as well as personal crew items from all 14 courageous astronauts who lost their lives – items never before on display for viewing by the public.
The 2000 square foot exhibit features an iconic section of the fuselage recovered from space shuttle Challenger emblazoned with the American flag and the flight deck windows recovered from space shuttle Columbia, that are part of the permanent “Forever Remembered” memorial that opened on June 27, 2015 – see photo above.
It also holds the largest collection of personal items of both flight crews in individual displays about the 14 crew members in a hallway that leads to a plaque with a quote from U.S. President Ronald Reagan.
“The future doesn’t belong to the fainthearted, it belongs to the brave,” said President Ronald Reagan in remarks to the nation in mourning shortly after the explosion of Space Shuttle Challenger on Jan. 28, 1986.
The “Forever Remembered” display was conceived in private by a very small circle spearheaded by Cabana and unknown by outsiders until the day it was formally opened. It completes the display inside the Atlantis pavilion, which commemorates NASA’s three decade long Space Shuttle Program that flew 135 missions from 1981 to 2011 with the reusable delta-winged vehicles that “captivated a generation.”
It is intended to be an emotional experience and “designed to honor the crews, pay tribute to the spacecraft and emphasize the importance of learning from the past” and the tragic consequences. This will enable safer flights in the future and fortify the spirit of never giving up on the exploration of space.
“The tragedies galvanized the agency to learn from these painful events, not only to safely return the shuttle fleet to flight, but to help assure the safety of future explorers,” NASA said in a statement.
Several dozen family members attended the tearful, heartfelt opening ceremony of “Forever Remembered” with very emotional remarks from Cabana and Bolden.
“These crews and these vehicles are part of who we are as an agency, and a nation. They tell the story of our never ending quest to explore, and our undying spirit to never give up,” Cabana stated at the ceremony.
Columbia and Challenger were the nation’s first two orbiters to be built. Columbia launched on the maiden space shuttle flight on April 12, 1981 on what is revered by many as the “boldest test flight in history” with NASA astronauts John Young and Bob Crippen.
“When I look into those windows, I see John Young and Bob Crippen preparing to launch on the boldest test flight in history, the first flight of America’s space shuttle, Columbia,” Cabana added.
“I see a much younger Bob Cabana launching to space on his first command, and I see Rick and Willie and the rest of the 107 crew smiling and experiencing the wonders of space on the final flight of Columbia.”
The idea to create a permanent memorial originated with a team led by Bob Cabana, and approved by Charlie Bolden only after every one of the astronauts families were in complete and unqualified agreement that this tribute display was the right thing to do in memory of their loved ones, tragically lost during the in flight accidents in 1986 and 2003.
“The crews of Challenger and Columbia are forever a part of a story that is ongoing,” Bolden said at the ceremony.
“It is the story of humankind’s evolving journey into space, the unknown, and the outer-reaches of knowledge, discovery and possibility. It is a story of hope.”
The wives of the two shuttle commanders, shared their thoughts on the new exhibit:
“It’s a beautiful remembrance of all the shuttles, with the marvelous display of Atlantis. Nothing compares to it in the world,” said June Scobee Rodgers, whose husband, Dick Scobee, commanded Challenger on STS-51L, in a statement.
“But Challenger and Columbia are not forgotten, and they’re well represented.”
“I knew it would be very emotional to see, but honestly, I didn’t expect to be so impacted by it. I just can’t stop thinking about it. As you walk in, you know you’re in a special place,” Evelyn Husband Thompson said of the memorial. Her husband, Rick, commanded Columbia on STS-107.
Here is a NASA description of both the Columbia and Challenger accidents and crews:
“Temperatures at Kennedy Space Center were just a few degrees above freezing on the morning of Jan. 28, 1986, as Challenger lifted off on its 10th mission, STS-51L. One minute and 13 seconds into the flight, a booster failure caused an explosion that destroyed the vehicle, resulting in the loss of the crew of seven astronauts: Commander Francis Scobee, Pilot Michael J. Smith, Mission Specialists Judith Resnik, Ellison Onizuka and Ronald McNair, and Payload Specialists Gregory Jarvis and Christa McAuliffe, a New Hampshire schoolteacher.”
“Seventeen years later, on Jan. 16, 2003, NASA’s flagship orbiter Columbia thundered into orbit on STS-107, a 16-day science mission. On board were Commander Rick Husband, Pilot Willie McCool, Payload Commander Michael Anderson, Mission Specialists Kalpana Chawla, David Brown and Laurel Clark, and Payload Specialist Ilan Ramon, Israel’s first astronaut. On Feb. 1, 2003, the orbiter broke apart in the skies above east Texas as it re-entered Earth’s atmosphere on the way to a planned landing at Kennedy. Seven more lives were lost.”
Today the fallen astronauts legacy of human spaceflight lives on at NASA with the International Space Station, the development of Commercial Crew manned capsules for low Earth orbit, and the development of the Orion deep space crew exploration vehicle and SLS rocket for NASA’s ambitious plans to send ‘Human to Mars’ in the 2030s.
Read more about both fallen shuttle crews and the Apollo 1 crew who perished in a launch pad accident in January 1967 in my tribute story posted here during NASA’s solemn week of remembrance in January.
I urge everyone to visit this hallowed “Forever Remembered” memorial at the Kennedy Space Center Visitor Complex and remember those who made the ultimate sacrifice to benefit all of us in the quest for new knowledge of the boundless expanse of space leading to new discoveries we cannot fathom today.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
The first ever ‘One-Year Mission’ to the International Space Station (ISS) started with a bang today, March 27, with the spectacular night time launch of the Russian/American crew from the Baikonur Cosmodrome in Kazakhstan at 3:42 p.m. EDT Friday (1:42 a.m., March 28 in Baikonur and culminated with a flawless docking this evening.
NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka launched aboard a Soyuz TMA-16M spacecraft to the International Space Station precisely on time today on the Expedition 43 mission.
The crew rocketed to orbit from the same pad as Russia’s Yuri Gagarin, the first human in space.
Kelly and Kornienko will spend about a year living and working aboard the space station on the marathon mission. Padalka will remain on board for six months.
The goal is to use the massive orbiting outpost to provide critical knowledge to NASA and researchers hoping to better understand how the human body reacts and adapts to long-duration spaceflight and the harsh environment of space.
The pathfinding mission is about double the normal time of most expeditions to the Earth orbiting space station, which normally last four to six months.
The one-year mission is among the first concrete steps to start fulfilling NASA’s “Journey to Mars” objective of sending “Humans to Mars” in the 2030s.
“Scott Kelly’s mission is critical to advancing the administration’s plan to send humans on a journey to Mars,” said NASA Administrator Charles Bolden, in a statement.
“We’ll gain new, detailed insights on the ways long-duration spaceflight affects the human body.”
This evening the three man international crew successfully rendezvous and docked at the ISS at the Poisk module at 9:33 p.m. EDT – just four orbits and six hours after liftoff.
‘Contact and capture confirmed, 1 year crew has arrived,’ said the NASA launch commentator Don Huot. “The one-year crew has arrived.”
“Soyuz is firmly attached to the ISS.”
Docking took place about 253 kilometers off the western coast of Colombia, South America approximately 5 hours and 51 minutes after today’s flawless launch from Baikonur.
The crews are scheduled to open the hatches between the Soyuz and ISS at about 11:15 p.m. EDT/315 GMT this evening after conducting pressure, leak and safety checks.
The arrival of Kelly, Kornienko and Padalka returns the massive orbiting outpost to its full six person crew complement.
The trio joins the current three person station crew comprising Expedition 43 commander Terry Virts of NASA, as well as flight engineers Samantha Cristoforetti of ESA (European Space Agency) and Anton Shkaplerov of Roscosmos, who have been aboard the complex since November 2014.
“Welcome aboard #Soyuz TMA-16M with Genna, Scott, and Misha- we just had a succesful docking,” tweeted Virts this evening post docking.
The 1 Year mission will provide baseline knowledge to NASA and its station partners – Roscosmos, ESA, CSA, JAXA – on how to prepare to send humans on lengthy deep space missions to Mars and other destinations in our Solar System.
A round-trip journey to Mars is likely to last three years or more! So we must determine how humans and their interactions can withstand the rigors of very long trips in space, completely independent of Earth.
Astronaut Scott Kelly will become the first American to live and work aboard the orbiting laboratory for a year-long mission and set a new American duration record.
Scott Kelly and Russian Cosmonauts Kornienko and Padalka are all veteran space fliers.
They have been in training for over two years since being selected in Nov. 2012.
No American has ever spent anywhere near a year in space. Four Russian cosmonauts – Valery Polyakov, Sergei Avdeyev, Vladimir Titov and Musa Manarov – conducted long duration stays of about a year or more in space aboard the Mir Space Station in the 1980s and 1990s.
Kelly and Kornienko will stay aboard the ISS until March 3, 2016, when they return to Earth on the Soyuz TMA-18M after 342 days in space. Kelly’s combined total of 522 days in space, will enable him to surpass current U.S. record holder Mike Fincke’s mark of 382 days.
Padalka will return in September after a six month stint, making him the world’s most experienced spaceflyer with a combined five mission total of 878 days in space.
They will conduct hundreds of science experiments focusing on at least 7 broad areas of investigation including medical, psychological and biomedical challenges faced by astronauts during long-duration space flight, as well as the long term effects of weightlessness and space radiation on the human body.
Another very unique science aspect of the mission involves comparative medical studies with Kelly’s identical twin brother, former NASA astronaut and shuttle commander Mark Kelly.
“They will participate in a number of comparative genetic studies, including the collection of blood samples as well as psychological and physical tests. This research will compare data from the genetically identical Kelly brothers to identify any subtle changes caused by spaceflight,” says NASA.
Scott Kelly is a veteran NASA Space Shuttle commander who has previously flown to space three times aboard both the Shuttle and Soyuz. He also served as a space station commander during a previous six-month stay onboard.
Good luck and Godspeed to Kelly, Kornienko and Padalka – starting humanity on the road to Mars !!
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – A state of the art quartet of identical science satellites aimed at unraveling the mysteries of the process known as magnetic reconnection is slated for a spectacular nighttime blastoff tonight, March 12, atop a United Launch Alliance Atlas V rocket on Cape Canaveral, Florida.
The $1.1 Billion Magnetospheric Multiscale (MMS) mission is comprised of four formation flying and identically instrumented observatories whose objective is providing the first three-dimensional views of a fundamental process in nature known as magnetic reconnection.
Magnetic reconnection is a little understood natural process whereby magnetic fields around Earth connect and disconnect while explosively releasing vast amounts of energy. It occurs throughout the universe.
Liftoff is slated for 10:44 p.m. EDT Thursday March 12 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida.
The launch window extends for 30 minutes. You can watch the MMS launch live on NASA TV, below, starting at 8 p.m.
Spectators ringing the Florida space coast region and ranging well beyond should be treated to a magnificent fireworks display and skyward streak of perhaps several minutes – weather and clouds permitting.
Currently the weather forecast is 70 percent “GO” for favorable conditions at launch time. The primary concerns for a safe and successful launch are for cumulus clouds and thick clouds.
In the event of a 24 hour delay for any reason the weather forecast is 60 percent “GO.”
The 195 foot tall rocket and encapsulated MMS satellite payload were rolled out to Space Launch Complex-41 on Wednesday March 10 at 10 a.m. on the Mobile Launch Platform (MLP) about 1800 feet from the Vertical Integration Facility or VIF to the Cape Canaveral pad.
The two stage Atlas V rocket will deliver the MMS constellation to a highly elliptical orbit.
The venerable rocket with a 100% success rate will launch in the Atlas V 421 configuration with a 4-meter diameter Extra Extended Payload Fairing along with two Aerojet Rocketdyne solid rocket motors attached to the Atlas booster first stage.
The Atlas first stage is powered by the RD AMROSS RD-180 engine and the Centaur upper stage is powered by the Aerojet Rocketdyne RL10A engine producing 22,300 lb of thrust.
The first stage is 12.5 ft in diameter and fueled with liquid propellants. The RD-180 burns RP-1 highly purified kerosene and liquid oxygen and delivers 860,200 lb of sea level thrust.
This is ULA’s 4th launch in 2015, the 53nd Atlas V mission and the fourth Atlas V 421 launch.
“This is the perfect time for this mission,” said Jim Burch, principal investigator of the MMS instrument suite science team at Southwest Research Institute (SwRI) in San Antonio, Texas.
“MMS is a crucial next step in advancing the science of magnetic reconnection. Studying magnetic reconnection near Earth will unlock the ability to understand how this process works throughout the entire universe.”
After a six month check out phase the probes will start science operation in September.
Unlike previous missions to observe the evidence of magnetic reconnection events, MMS will have sufficient resolution to measure the characteristics of ongoing reconnection events as they occur.
The four probes were built in-house by NASA at the agency’s Goddard Space Flight Center in Greenbelt, Maryland where I visited them during an inspection tour by NASA Administrator Charles Bolden.
I asked Bolden to explain the goals of MMS during a one-on-one interview.
“MMS will help us study the phenomena known as magnetic reconnection and help us understand how energy from the sun – magnetic and otherwise – affects our own life here on Earth,” Bolden told Universe Today.
“MMS will study what effects that process … and how the magnetosphere protects Earth.”
MMS measurements should lead to significant improvements in models for yielding better predictions of space weather and thereby the resulting impacts for life here on Earth as well as for humans aboard the ISS and robotic satellite explorers in orbit and the heavens beyond.
The best place to study magnetic reconnection is ‘in situ’ in Earth’s magnetosphere. This will lead to better predictions of space weather phenomena.
Magnetic reconnection is also believed to help trigger the spectacular aurora known as the Northern or Southern lights.
MMS is a Solar Terrestrial Probes Program, or STP, mission within NASA’s Heliophysics Division
Watch for Ken’s ongoing MMS coverage and he’ll be onsite at the Kennedy Space Center in the days leading up to the launch on March 12.
Stay tuned here for Ken’s continuing MMS, Earth and planetary science and human spaceflight news.
All systems are go for the inaugural ground test firing on March 11 of the world’s most powerful solid rocket booster ever built that will one day power NASA’s mammoth new Space Launch System (SLS) heavy lift rocket and propel astronauts to deep space destinations.
The booster known as qualification motor, QM-1, is the largest solid rocket motor ever built and will be ignited on March 11 for a full duration static fire test by prime contractor Orbital ATK at the newly merged firms test facility in Promontory, Utah.
Ignition of the horizontally mounted motor is planned for 11:30 a.m. EDT (9:30 a.m. MDT) on Wednesday, March 11 on the T-97 test stand.
The test will be broadcast live on NASA TV.
The two minute long, full duration static test firing of the motor marks a major milestone in the ongoing development of NASA’s SLS booster, which is the most powerful rocket ever built in human history.
The 5-segment booster produces 3.6 million lbs of maximum thrust which equates to more than 14 Boeing 747-400s at full takeoff power!
The new 5-segment booster is directly derived from the 4-segment booster used during NASA’s three decade long Space Shuttle program. One segment has been added and therefore the new, longer and more powerful booster must be requalified to launch the SLS and humans.
A second test is planned a year from now and will qualify the boosters for use with the SLS.
Teams of engineers, operators, inspectors and program managers across Orbital ATK’s Flight Systems Group have spent months getting ready for the QM-1 test. To prepare they started countdown tests on Feb 25.
“The crew officially starts daily countdown test runs of the systems this week, at T-15 days,” said Kevin Rees, director, Test & Research Operations at Orbital ATK.
“These checks, along with other test stand calibrations, will verify all systems are ready for the static test. Our team is prepared and we are proud to play such a significant role on this program.”
The QM-1 booster is being conditioned to 90 degrees and the static fire test will qualify the booster design for high temperature launch conditions. It sits horizontally in the test stand and measures 154 feet in length and 12 feet in diameter and weighs 801 tons.
The static fire test will collect data on 103 design objectives as measured through more than 534 instrumentation channels on the booster it is firing.
The second booster test in March 2016 will be conducted at lower temperature to qualify the lower end of the launch conditions at 40 degrees F.
The first stage of the SLS will be powered by a pair of the five-segment boosters and four RS-25 engines that will generate a combined 8.4 million pounds of liftoff thrust.
The SLS is designed to propel the Orion crew capsule to deep space destinations, including the Moon, asteroids and the Red Planet.
The maiden test flight of the SLS is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds. It will boost an unmanned Orion on an approximately three week long test flight beyond the Moon and back.
NASA plans to gradually upgrade the SLS to achieve an unprecedented lift capability of 130 metric tons (143 tons), enabling the more distant missions even farther into our solar system.
The first SLS test flight with the uncrewed Orion is called Exploration Mission-1 (EM-1) and will launch from Launch Complex 39-B at the Kennedy Space Center.
Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
NASA’s first mission dedicated to study the process in nature known as magnetic reconnection undergoing final preparation for launch from Cape Canaveral, Florida in just under two weeks time.
The Magnetospheric Multiscale (MMS) mission is comprised of a quartet of identically instrumented observatories aimed at providing the first three-dimensional views of a fundamental process in nature known as magnetic reconnection.
Magnetic reconnection is the process whereby magnetic fields around Earth connect and disconnect while explosively releasing vast amounts of energy. It occurs throughout the universe.
“Magnetic reconnection is one of the most important drivers of space weather events,” said Jeff Newmark, interim director of the Heliophysics Division at NASA Headquarters in Washington.
“Eruptive solar flares, coronal mass ejections, and geomagnetic storms all involve the release, through reconnection, of energy stored in magnetic fields. Space weather events can affect modern technological systems such as communications networks, GPS navigation, and electrical power grids.”
The four MMS have been stacked on top of one another like pancakes, encapsulated in the payload fairing, transported to the launch pad, hoisted and mated to the top of the 195-foot-tall rocket.
The nighttime launch of MMS on a United Launch Alliance Atlas V rocket should put on a spectacular sky show for local spectators along the Florida space coast as well as more distant located arcing out in all directions.
Liftoff is slated for 10:44 p.m. EDT Thursday March 12 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Florida.
The launch window extends for 30 minutes.
After a six month check out phase the probes will start science operation in September.
Unlike previous missions to observe the evidence of magnetic reconnection events, MMS will have sufficient resolution to measure the characteristics of ongoing reconnection events as they occur.
The four probes were built in-house by NASA at the agency’s Goddard Space Flight Center in Greenbelt, Maryland where is visited them during an inspection tour by NASA Administrator Charles Bolden.
I asked Bolden to explain the goals of MMS during a one-on-one interview.
“MMS will help us study the phenomena known as magnetic reconnection and help us understand how energy from the sun – magnetic and otherwise – affects our own life here on Earth,” Bolden told Universe Today.
“MMS will study what effects that process … and how the magnetosphere protects Earth.”
MMS measurements should lead to significant improvements in models for yielding better predictions of space weather and thereby the resulting impacts for life here on Earth as well as for humans aboard the ISS and robotic satellite explorers in orbit and the heavens beyond.
The best place to study magnetic reconnection is ‘in situ’ in Earth’s magnetosphere. This will lead to better predictions of space weather phenomena.
“This is the perfect time for this mission,” said Jim Burch, principal investigator of the MMS instrument suite science team at Southwest Research Institute (SwRI) in San Antonio, Texas.
“MMS is a crucial next step in advancing the science of magnetic reconnection. Studying magnetic reconnection near Earth will unlock the ability to understand how this process works throughout the entire universe.”
Magnetic reconnection is also believed to help trigger the spectacular aurora known as the Northern or Southern lights.
MMS is a Solar Terrestrial Probes Program, or STP, mission within NASA’s Heliophysics Division.
Watch for Ken’s ongoing MMS coverage and he’ll be onsite at the Kennedy Space Center in the days leading up to the launch on March 12.
Stay tuned here for Ken’s continuing MMS, Earth and planetary science and human spaceflight news.
Ken Kremer
………….
Learn more about MMS, Mars rovers, Orion, SpaceX, Antares, NASA missions and more at Ken’s upcoming outreach events:
Mar 6: “MMS Update, Future of NASA Human Spaceflight, Curiosity on Mars,” Delaware Valley Astronomers Assoc (DVAA), Radnor, PA, 7 PM.
Mar 10-12: “MMS, Orion, SpaceX, Antares, Curiosity Explores Mars,” Kennedy Space Center Quality Inn, Titusville, FL, evenings
The purpose of the pair of abort tests is to demonstrate a crew escape capability to save the astronauts’ lives in case of a rocket failure, starting from the launch pad and going all the way to orbit.
Both SpaceX and Boeing plan to launch the first manned test flights to the ISS with their respective transports in 2017.
During the Sept. 16, 2014, news briefing at the Kennedy Space Center, NASA Administrator Charles Bolden announced that contracts worth a total of $6.8 Billion were awarded to SpaceX to build the manned Dragon V2 and to Boeing to build the manned CST-100.
The first abort test involving the pad abort test is currently slated to take place soon from the company’s launch pad on Cape Canaveral Air Force Station in Florida, according to Gwynne Shotwell, president of SpaceX.
“First up is a pad abort in about a month,” said Shotwell during a media briefing last week at NASA’s Johnson Space Center in Houston, Texas.
SpaceX engineers have been building the pad abort test vehicle for the unmanned test for more than a year at their headquarters in Hawthorne, California.
Dragon V2 builds on and significantly upgrades the technology for the initial cargo version of the Dragon which has successfully flown five operational resupply missions to the ISS.
“It took us quite a while to get there, but there’s a lot of great technology and innovations in that pad abort vehicle,” noted Shotwell.
The pad abort demonstration will test the ability of a set of eight SuperDraco engines built into the side walls of the crew Dragon to pull the vehicle away from the launch pad in a simulated emergency.
The SuperDraco engines are located in four jet packs around the base. Each engine can produce up to 120,000 pounds of axial thrust to carry astronauts to safety, according to a SpaceX description.
Here is a SpaceX video of SuperDraco’s being hot fire tested in Texas:
Video caption: Full functionality of Crew Dragon’s SuperDraco jetpacks demonstrated with hotfire test in McGregor, TX. Credit: SpaceX
For the purpose of this test, the crew Dragon will sit on top of a facsimile of the unpressurized trunk portion of the Dragon. It will not be loaded on top of a Falcon 9 rocket for the pad abort test.
The second abort test involves a high altitude abort test launching atop a SpaceX Falcon 9 rocket from Vandenberg Air Force Base in California.
“An in-flight abort test [follows] later this year,” said Shotwell.
“The Integrated launch abort system is critically important to us. We think it gives incredible safety features for a full abort all the way through ascent.”
“It does also allow us the ultimate goal of fully propulsive landing.”
Both tests were originally scheduled for 2014 as part of the firm’s prior CCiCAP development phase contract with NASA, SpaceX CEO Elon Musk told me in late 2013.
“Assuming all goes well, we expect to conduct [up to] two Dragon abort tests next year in 2014,” Musk explained.
Last year, NASA granted SpaceX an extension into 2015 for both tests under SpaceX’s CCiCAP milestones.
The SpaceX Dragon V2 will launch atop a human rated Falcon 9 v1.1 rocket from Space Launch Complex 40 at Cape Canaveral.
“We understand the incredible responsibility we’ve been given to carry crew. We should fly over 50 Falcon 9’s before crewed flight,” said Shotwell.
To accomplish the first manned test flight to the ISS by 2017, the US Congress must agree to fully fund the commercial crew program.
“To do this we need for Congress to approve full funding for the Commercial Crew Program,” Bolden said at last week’s JSC media briefing.
Severe budget cuts by Congress forced NASA into a two year delay in the first commercial crew flights to the ISS from 2015 to 2017 – and also forced NASA to pay hundreds of millions of more dollars to the Russians for crews seats aboard their Soyuz instead of employing American aerospace workers.
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.