Happy Asteroid Day! Schweickart Prize Spotlights Planetary Defense

Vapor trail from 2013 Chelyabinsk meteor
This vapor trail was left behind by an asteroid that zoomed over the Siberian city of Chelyabinsk in 2013. (Credit: Alex Alishevskikh via NASA)

Every year on June 30, Asteroid Day marks the anniversary of a meteor airburst in 1908 that leveled hundreds of square miles of Siberian forest land. But a more recent meteor blast — and a new plan for getting advance warning of the next one — is receiving some added attention for this year’s Asteroid Day.

The first-ever Schweickart Prize, named in honor of Apollo 9 astronaut Rusty Schweickart, is going to a researcher who has proposed a system for spotting potentially threatening asteroids coming at us from a difficult-to-monitor zone between Earth and the sun. It was just such an asteroid that blew up over the Siberian city of Chelyabinsk in 2013, spraying debris that injured about 1,500 people and caused an estimated $33 million in property damage.

The proposal from astronomy Ph.D. student Joseph DeMartini calls for setting up a consortium of ground-based observatories, anchored by the Vera C. Rubin Observatory in Chile, to focus on the twilight sky just after sunset and just before sunrise. Those are the times of day when astronomers have the best chance of finding sunward near-Earth objects (NEOs) that spend much of their time within Earth’s orbit.

“It’s a very interesting proposal that we hope gets picked up,” Rusty Schweickart said.

Continue reading “Happy Asteroid Day! Schweickart Prize Spotlights Planetary Defense”

Meteors Explode from the Inside When They Reach the Atmosphere

According to a new study, meteors may be less dangerous than we thought, thanks to Earth's atmosphere. Credit: David A Aguilar (CfA).

Earth is no stranger to meteors. In fact, meteor showers are a regular occurrence, where small objects (meteoroids) enter the Earth’s atmosphere and radiate in the night sky. Since most of these objects are smaller than a grain of sand, they never reach the surface and simply burn up in the atmosphere. But every so often, a meteor of sufficient size will make it through and explode above the surface, where it can cause considerable damage.

A good example of this is the Chelyabinsk meteoroid, which exploded in the skies over Russia in February of 2013. This incident demonstrated just how much damage an air burst meteorite can do and highlighted the need for preparedness. Fortunately, a new study from Purdue University indicates that Earth’s atmosphere is actually a better shield against meteors than we gave it credit for.

Their study, which was conducted with the support of NASA’s Office of Planetary Defense, recently appeared in the scientific journal Meteoritics and Planetary Science – titled “Air Penetration Enhances Fragmentation of Entering Meteoroids. The study team consisted of Marshall Tabetah and Jay Melosh,  a postdoc research associate and a professor with the department of Earth, Atmospheric and Planetary Sciences (EAPS) at Purdue University, respectively.

In the past, researchers have understood that meteoroids often explode before reaching the surface, but they were at a loss when it came to explaining why. For the sake of their study, Tabetah and Melosh used the Chelyabinsk meteoroid as a case study to determine exactly how meteoroids break up when they hit our atmosphere. At the time, the explosion came as quite the a surprise, which was what allowed for such extensive damage.

When it entered the Earth’s atmosphere, the meteoroid created a bright fireball and exploded minutes later, generating the same amount of energy as a small nuclear weapon. The resulting shockwave blasted out windows, injuring almost 1500 people and causing millions of dollars in damages. It also sent fragments hurling towards the surface that were recovered, and some were even used to fashion medals for the 2014 Sochi Winter Games.

But what was also surprising was how much of the meteroid’s debris was recovered after the explosion. While the meteoroid itself weighed over 9000 metric tonnes (10,000 US tons), only about 1800 metric tonnes (2,000 US tons) of debris was ever recovered. This meant that something happened in the upper atmosphere that caused it to lose the majority of its mass.

Looking to solve this, Tabetah and Melosh began considering how high-air pressure in front of a meteor would seep into its pores and cracks, pushing the body of the meteor apart and causing it to explode. As Melosh explained in a Purdue University News press release:

“There’s a big gradient between high-pressure air in front of the meteor and the vacuum of air behind it. If the air can move through the passages in the meteorite, it can easily get inside and blow off pieces.”

The two main smoke trails left by the Russian meteorite as it passed over the city of Chelyabinsk. Credit: AP Photo/Chelyabinsk.ru

To solve the mystery of where the meteoroid’s mass went, Tabetah and Melosh constructed models that characterized the entry process of the Chelyabinsk meteoroid that also took into account its original mass and how it broke up upon entry. They then developed a unique computer code that allowed both solid material from the meteoroid’s body and air to exist in any part of the calculation. As Melosh indicated:

“I’ve been looking for something like this for a while. Most of the computer codes we use for simulating impacts can tolerate multiple materials in a cell, but they average everything together. Different materials in the cell use their individual identity, which is not appropriate for this kind of calculation.”

This new code allowed them to fully simulate the exchange of energy and momentum between the entering meteoroid and the interacting atmospheric air. During the simulations, air that was pushed into the meteoroid was allowed to percolate inside, which lowered the strength of the meteoroid significantly. In essence, air was able to reach the insides of the meteoroid and caused it to explode from the inside out.

This not only solved the mystery of where the Chelyabinsk meteoroid’s missing mass went, it was also consistent with the air burst effect that was observed in 2013. The study also indicates that when it comes to smaller meteroids, Earth’s best defense is its atmosphere. Combined with early warning procedures, which were lacking during the Chelyabinsk meteroid event, injuries can be avoided in the future.

This is certainly good news for people concerned about planetary protection, at least where small meteroids are concerned. Larger ones, however, are not likely to be affected by Earth’s atmosphere. Luckily, NASA and other space agencies make it a point to monitor these regularly so that the public can be alerted well in advance if any stray too close to Earth. They are also busy developing counter-measures in the event of a possible collision.

Further Reading: Purdue University, Meteoritics & Planetary Science

Impending Asteroid Flyby Will be a Chance to Test NASA’s Planetary Defense Network!

Artist's concept of a large asteroid passing by the Earth-Moon system. Credit: A combination of ESO/NASA images courtesy of Jason Major/Lights in the Dark.

This coming October, an asteroid will fly by Earth. Known as 2012 TC4, this small rock is believed to measure between 10 and 30 meters (30 and 100 feet) in size. As with most asteroids, this one is expected to sail safely past Earth without incident. This will take place on October 12th, when the asteroid will pass us at a closest estimated distance of 6,800 kilometers (4,200 miles) from Earth’s surface.

That’s certainly good news. But beyond the fact that it does not pose a threat to Earth, NASA is also planning on using the occasion to test their new detection and tracking network. As part of their Planetary Defense Coordination Office (PDCO), this network is responsible for detecting and tracking asteroids that periodically pass close to Earth, which are known as Potentially Hazardous Objects (PHOs)

In addition to relying on data provided by NASA’s Near-Earth Object (NEO) Observations Program. the PDCO also coordinates NEO observations conducted by National Science Foundation (NSF)-sponsored ground-based observatories, as well as space situational awareness facilities run by the US Air Force. Aside from finding and tracking PHOs, the PDCO is also responsible for coming up with ways of deflecting and redirecting them.

On Oct. 12, 2017, asteroid 2012 TC4 will safely fly past Earth at an estimated distance of 6,800 km (4,200 mi). Credits: NASA/JPL-Caltech

The PDCO was officially created in response to the NASA Office of Inspector General’s 2014 report, titled “NASA’s Efforts to Identify Near-Earth Objects and Mitigate Hazards.” Citing such events as the Chelyabinsk meteor, and how such events are relatively common, the report indicated that coordination, early warning and mitigation strategies were needed for the future:

“[I]n February 2013 an 18-meter (59 foot) meteor exploded 14.5 miles above the city of Chelyabinsk, Russia, with the force of 30 atomic bombs, blowing out windows, destroying buildings, injuring more than 1,000 people, and raining down fragments along its trajectory… Recent research suggests that Chelyabinsk-type events occur every 30 to 40 years, with a greater likelihood of impact in the ocean than over populated areas, while impacts from objects greater than a mile in diameter are predicted only once every several hundred thousand years.”

The PDCO was established in 2016, which makes this upcoming flyby the first chance they will have to test their network of observatories and scientists dedicated to planetary defense. Michael Kelley is the program scientist and the NASA Headquarters lead for the TC4 observation campaign, which has been monitoring 2012 TC4 for years. As he said in a recent NASA press statement:

“Scientists have always appreciated knowing when an asteroid will make a close approach to and safely pass the Earth because they can make preparations to collect data to characterize and learn as much as possible about it. This time we are adding in another layer of effort, using this asteroid flyby to test the worldwide asteroid detection and tracking network, assessing our capability to work together in response to finding a potential real asteroid threat.”

Diagram showing the data gathered from 1994-2013, indicating daytime (orange) and nighttime (blue) impacts of small meteorites. Credit: NASA

In addition, the flyby will be an opportunity to reacquire 2012 TC4, which astronomers lost track of in 2012 when it moved beyond the range of their telescopes. For this reason, people like Professor Vishnu Reddy of the University of Arizona are also excited. A member of the Lunar and Planetary Laboratory, Reddy also leads the campaign to reacquire the asteroid. As he indicated, this flyby will be a chance for collaborative observation.

“This is a team effort that involves more than a dozen observatories, universities and labs across the globe so we can collectively learn the strengths and limitations of our near-Earth object observation capabilities,” he said. “This effort will exercise the entire system, to include the initial and follow-up observations, precise orbit determination, and international communications.”

2012 TC4 was originally discovered on Oct. 5th, 2012, by the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) at the Haleakala Observatory in Hawaii. After it sped past Earth in that same year, it has not been directly observed since. And while it is slightly larger than the meteor that exploded in Earth’s atmosphere near Chelyabinsk, Russia, in 2013, scientists are certain that it will pass us by at a safe distance.

This is based on tracking data that was collected by scientists from NASA’s Center for Near-Earth Object Studies (CNEOS). After monitoring 2012 TC4 for a period of seven days after it was discovered in 2012, they determined that at its closest approach, the asteroid will pass no closer than 6,800 km (4,200 mi) to Earth. However, it is more likely that it will pass us at distance of about 270,000 km (170,000 mi).

The Pan-Starrs telescope at dawn. The mountain in the distance is Mauna Kea, about 130 kilometers southeast. Credit: pan-starrs.ifa.hawaii.edu

This would place it at a distance that is about two-thirds the distance between the Earth and the Moon. The last time this asteroid passed Earth, it did so at a distance that was one-quarter the distance between the Earth and the Moon. Therefore, the odds of it passing by without incident are even greater this time around. So rather than representing a threat, the passage of this asteroid represents a good chance for research.

As Paul Chodas, the manager of the CNEOS at NASA’s Jet Propulsion Laboratory, stated:

“This is the perfect target for such an exercise because while we know the orbit of 2012 TC4 well enough to be absolutely certain it will not impact Earth, we haven’t established its exact path just yet. It will be incumbent upon the observatories to get a fix on the asteroid as it approaches, and work together to obtain follow-up observations than make more refined asteroid orbit determinations possible.”

By monitoring 2012 TC4 as it flies by, astronomers will be able to refine their knowledge about the asteroid’s orbit, which will help them to predict and calculate future flybys with even greater precision. This will further mitigate the risk posed by PHOs down the road, and help the PDCO to develop and test strategies to address possible future impacts.

In short, remain calm! This flyby is a good thing!

Further Reading: NASA

How Fast is Mach One?

What is Sound
FA-18_Hornet_breaking_sound_barrier_(7_July_1999)_-_filtered

Within the realm of physics, there are certain barriers that human beings have come to recognize. The most well-known is the speed of light, the maximum speed at which all conventional matter and all forms of information in the Universe can travel. This is a barrier that humanity may never be able to push past, mainly because doing so violate one of the most fundamental laws of physics – Einstein’s Theory of General Relativity.

But what about the speed of sound? This is another barrier in physics, but one which humanity has been able to break (several times over in fact). And when it comes to breaking this barrier, scientists use what is known as a Mach Number to represent the flow boundary past the local speed of sound. In other words, pushing past the sound barrier is defined as Mach 1. So how fast do you have to be going to do that?

Definition:

When we hear the term Mach 1 it is easy to assume it is the speed of sound through Earth’s atmosphere. However this term is more loaded than you might think. The truth is that a Mach Number is a ratio rather than an actual direct measurement of speed. And this ratio is due to the fact that the speed of sound varies from one location to the next, owing to differences in temperature and air density.

An F-22 Raptor reaching a velocity high enough to achieve a sonic boom. Credit: strangesounds.org

Mathematically, this can be defined as M = u/c, where M is the Mach number, u is the local flow velocity with respect to the boundaries (i.e. the speed of the object moving through the medium), and c is the speed of sound in that particular medium (i.e. local atmosphere, water, etc).

When the speed of sound is broken, this results in what is known as a “sonic boom”. This is the loud, cracking sound that is associated with the shock waves that are created by an object traveling faster than the local speed of sound. Examples range an aircraft breaking the sound barrier to miniature booms caused by bullets flying by, or the crack of a bullwhip.

Speed of Sound:

Basically, the speed of sound is the distance traveled in a certain amount of time by a sound wave as it propagates through an elastic medium. As already noted, this is not a universal value, but comes down to the composition of the medium and the conditions of that medium.  When we talk of the speed of sound, we refer to the speed of sound in Earth’s atmosphere. But even that is subject to variation.

However, scientists tend to rely on the speed of sound as measured in dry air (i.e. low humidity) and at a temperature of 20 °C (68 °F) as the standard. Under these conditions, the local speed of sound is 343 meters per second (1,235 km/h; 767 mph) – or 1 kilometer in 2.91 s and 1 mile in 4.69 s.

Classifications:

As with most ratios, there are approximations and categories that are used to measure the speed of the object in relation to the sound barrier. This gives us the categories of subsonic, transonic, supersonic, and hypersonic. This categorization system is often used to classify aircraft or spacecraft, the minimum requirement being that most of the craft classified have the ability to approach or exceed the speed of sound.

The Cessna 172, a commercial, propeller-driven aircraft that is classified as subsonic. Credit: Wikipedia Commons/Adrian Pingstone

For aircraft or any object that flies at a speed below the sound barrier, the classification of subsonic applies. This category includes most commuter jets and small commercial aircraft, though some exceptions have been noted (i.e. supersonic commercial jets like the Concorde).

Since these craft never meet or exceed the speed of sound, they will have a Mach number that is less than one and therefore expressed in decimal form – i.e. less than Mach 0.8 (273 m/s; 980 km/h; 609 mph). Typically, these aircraft are propeller-driven and tend to have high aspect-ratio (slender) wings and rounded features.

The designation of transonic applies to a condition of flight where a range of airflow velocities exist around and past the aircraft. These speeds are concurrently below, at, and above the speed of sound, ranging from Mach 0.8 to 1.2 (273-409 m/s; 980-1,470 km/h; 609-914 mph). Transonic aircraft nearly always have swept wings, causing the delay of drag-divergence, and are driven by jet engines.

The next category is supersonic aircraft. These are craft that can move beyond the compression of air that is the “sound barrier.” These craft generally have a Mach number of between 1 and 5 (410–1,702 m/s; 1,470–6,126 km/h; 915-3,806 mph). Aircraft designed to fly at supersonic speeds show large differences in their aerodynamic design because of the radical differences in the behavior of flows above Mach 1.

These include sharp edges, thin wing sections, and tail stabilizers (aka. fins) or canards (forewings) that are capable of adjusting. Craft that typically have this designation include modern fighter jets, spy planes (like the SR-71 Blackbird) and the aforementioned Concorde.

The last category is hypersonic, which applies to aircraft that can exceed the speed of Mach 5 and can achieve speeds as high as Mach 10 (1,702–3,403 m/s; 6,126–12,251 km/h; 3,806–7,680 mph). Very few aircraft can move at such speeds, and tend to be rocket-powered (like the X-15), scramjets (like the X-43, or HyperX), or spacecraft that are in the process of leaving Earth’s atmosphere.

Another example is objects entering the Earth’s atmosphere. These can take the form of spacecraft performing re-entry, or meteorites that have passed through and broken up in Earth’s atmosphere. For example, the meteor that entered the skies above the above the small town of Chelyabinsk, Russia, in February of 2013 was traveling at a speed of about 19.16 ± 0.15 km/s (68,436 – 69,516 km/h; 42,524 – 43,195 mph).

In other words, the meteorite was traveling between Mach 55 and 56 when it hit our atmosphere! Given its tremendous speed, when the meteor reached the skies above Chelyabinsk, it created a sonic boom so powerful that it caused extensive damage to thousand of building in six cities across the region. This damage, which included a lot of exploding windows, resulted in 1,500 people being injured.

So how fast is Mach One? The short answer is that it depends on where you are. But in general, it is a speed that exceeds about 1200 km/h or 750 mph. If you’re capable of going this fast, you will be breaking the sound barrier, and people for miles around will be hearing about it!

We have written many interesting articles about sound here Universe Today. Here’s What is Sound?, What is the Fastest Jet in the World?, What is Air Resistance?, and What Does NASA Sound Like?

For more information, check out NASA’s Article about the Mach Number, and here’s a link to a lesson about the Mach Number.

We’ve recorded an episode of Astronomy Cast all about the space shuttle. Listen here, Episode 127: The US Space Shuttle.

Sources: