Russian Meteor Experienced Melting Before Slamming Into Earth: Study

The two main smoke trails left by the Russian meteorite as it passed over the city of Chelyabinsk. Credit: AP Photo/Chelyabinsk.ru

A collision or “near miss” caused melting in the Chelyabinsk meteor before it slammed into Earth’s atmosphere this February, causing damage and injuries to hundreds in the remote Russian region.

A new study, presented at the Goldschmidt Conference in Florence, Italy, says some meteorite fragments’ composition shows strong evidence of heating, which is an indication of interplanetary violence of some sort.

“The meteorite which landed near Chelyabinsk is a type known as an LL5 chondrite, and it’s fairly common for these to have undergone a melting process before they fall to Earth,” stated Victor Sharygin, a researcher from the Sobolev Institute of Geology and Mineralogy in Russia.

“This almost certainly means that there was a collision between the Chelyabinsk meteorite and another body in the solar system, or a near miss with the Sun.”

Chelyabinsk’s size of 59 feet (18 meters) was by no means a very large meteor, but it was enough to cause car alarms to go off and to shatter glass when it exploded over Russia on Feb. 15. Its arrival brought the danger of space rocks once again to public attention.

In just the few short months since its arrival, a number of research studies have begun to sketch out its origins and effects. One recent NASA study showed that the cloud of dust from the explosion spread around the northern hemisphere in days.

Model and satellite data show that four days after the bolide explosion, the faster, higher portion of the plume (red) had snaked its way entirely around the northern hemisphere and back to Chelyabinsk, Russia. Image Credit: NASA's Goddard Space Flight Center Scientific Visualization
Model and satellite data show that four days after the bolide explosion, the faster, higher portion of the plume (red) had snaked its way entirely around the northern hemisphere and back to Chelyabinsk, Russia.
Image Credit: NASA’s Goddard Space Flight Center Scientific Visualization

Sharygin’s team analyzed several fragments of the meteorites and put them into three groups: light, dark and intermediate. Lights ones were the most abundant. Dark fragments were most commonly found in the area where the meteorite hit the Earth.

While only three of the dark fragments show there was previous melting, the researchers say it’s quite possible that more samples might be available from the public and most notably, from the main portion that is still at the bottom of Chebarkul Lake.

“The dark fragments include a large proportion of fine-grained material, and their structure, texture and mineral composition shows they were formed by a very intensive melting process,” a press release stated.

“This material is distinct from the ‘fusion crust’ – the thin layer of material on the surface of the meteorite that melts, then solidifies, as it travels through the Earth’s atmosphere.”

A "fusion crust" or melting is visible in this fragment of the Chelyabinsk meteorite. Credit: Victor Sharygin
A “fusion crust” or melting is visible in this fragment of the Chelyabinsk meteorite. Credit: Victor Sharygin

Researchers also spotted “bubbles” in the dark fragments that they consider either “perfect crystals” of oxides, silicates and metal or little spots that are filled up with sulfide or metal.

They also saw platinum-type elements in the crust, which was a surprise as the time it takes for a crust to fuse is too short for platinum to form.

“We think the appearance (formation) of this platinum group mineral in the fusion crust may be linked to compositional changes in metal-sulfide liquid during remelting and oxidation processes as the meteorite came into contact with atmospheric oxygen,” Sharygin stated.

The work is ongoing, and no submission date for a study for publication was disclosed.

Source: EurekAlert!

Satellite Watches Dust from Chelyabinsk Meteor Spread Around the Northern Hemisphere

Model and satellite data show that four days after the bolide explosion, the faster, higher portion of the plume (red) had snaked its way entirely around the northern hemisphere and back to Chelyabinsk, Russia. Image Credit: NASA's Goddard Space Flight Center Scientific Visualization

When a meteor weighing 10,000 metric tons exploded 22.5 km (14 miles) above Chelyabinsk, Russia on Feb. 15, 2013, the news of the event spread quickly around the world. But that’s not all that circulated around the world. The explosion also deposited hundreds of tons of dust in Earth’s stratosphere, and NASA’s Suomi NPP satellite was in the right place to be able to track the meteor plume for several months. What it saw was that the plume from the explosion spread out and wound its way entirely around the northern hemisphere within four days.

The bolide, measuring 59 feet (18 meters) across, slipped quietly into Earth’s atmosphere at 41,600 mph (18.6 kilometers per second). When the meteor hit the atmosphere, the air in front of it compressed quickly, heating up equally as quick so that it began to heat up the surface of the meteor. This created the tail of burning rock that was seen in the many videos that emerged of the event. Eventually, the space rock exploded, releasing more than 30 times the energy from the atom bomb that destroyed Hiroshima. For comparison, the ground-impacting meteor that triggered mass extinctions, including the dinosaurs, measured about 10 km (6 miles) across and released about 1 billion times the energy of the atom bomb.

Atmospheric physicist Nick Gorkavyi from Goddard Space Flight Center, who works with the Suomi satellite, had more than just a scientific interest in the event. His hometown is Chelyabinsk.

“We wanted to know if our satellite could detect the meteor dust,” said Gorkavyi, who led the study, which has been accepted for publication in the journal Geophysical Research Letters. “Indeed, we saw the formation of a new dust belt in Earth’s stratosphere, and achieved the first space-based observation of the long-term evolution of a bolide plume.”

The team said they have now made unprecedented measurements of how the dust from the meteor explosion formed a thin but cohesive and persistent stratospheric dust belt.

About 3.5 hours after the initial explosion, the Ozone Mapping Profiling Suite instrument’s Limb Profiler on the NASA-NOAA Suomi National Polar-orbiting Partnership satellite detected the plume high in the atmosphere at an altitude of about 40 km (25 miles), quickly moving east at about 300 km/h (190 mph).

The day after the explosion, the satellite detected the plume continuing its eastward flow in the jet and reaching the Aleutian Islands. Larger, heavier particles began to lose altitude and speed, while their smaller, lighter counterparts stayed aloft and retained speed – consistent with wind speed variations at the different altitudes.

By Feb. 19, four days after the explosion, the faster, higher portion of the plume had snaked its way entirely around the Northern Hemisphere and back to Chelyabinsk. But the plume’s evolution continued: At least three months later, a detectable belt of bolide dust persisted around the planet.

Gorkavyi and colleagues combined a series of satellite measurements with atmospheric models to simulate how the plume from the bolide explosion evolved as the stratospheric jet stream carried it around the Northern Hemisphere.

“Thirty years ago, we could only state that the plume was embedded in the stratospheric jet stream,” said Paul Newman, chief scientist for Goddard’s Atmospheric Science Lab. “Today, our models allow us to precisely trace the bolide and understand its evolution as it moves around the globe.”

NASA says the full implications of the study remain to be seen. Scientists have estimated that every day, about 30 metric tons of small material from space encounters Earth and is suspended high in the atmosphere. Now with the satellite technology that’s capable of more precisely measuring small atmospheric particles, scientists should be able to provide better estimates of how much cosmic dust enters Earth’s atmosphere and how this debris might influence stratospheric and mesospheric clouds.

It will also provide information on how common bolide events like the Chelyabinsk explosion might be, since many might occur over oceans or unpopulated areas.

“Now in the space age, with all of this technology, we can achieve a very different level of understanding of injection and evolution of meteor dust in atmosphere,” Gorkavyi said. “Of course, the Chelyabinsk bolide is much smaller than the ‘dinosaurs killer,’ and this is good: We have the unique opportunity to safely study a potentially very dangerous type of event.”

Source: NASA

Russian Meteorite Bits Will Be Used In Some 2014 Olympic Medals

The two main smoke trails left by the Russian meteorite as it passed over the city of Chelyabinsk. Credit: AP Photo/Chelyabinsk.ru

Going for gold in the Sochi Winter Olympics could earn athletes some out-of-this-world rocks.

Athletes who top the podium on Feb. 15, 2014 will receive special medals with pieces of the Chelyabinsk meteor that broke up over the remote Russian community on that day in 2013, according to media reports.

“We will hand out our medals to all the athletes who will win gold on that day, because both the meteorite strike and the Olympic Games are the global events,” stated Chelyabinsk Region Culture Minister Alexei Betekhtin in a Ria Novosti report.

The reported sports that will receive these medals include:

  • Women’s 1,000 meter and men’s 1,500 meter short track;
  • Men’s skeleton;
  • Women’s cross-country skiing relay;
  • Men’s K-125 ski jump;
  • Men’s 1,500 meter speed skating;
  • Women’s super giant slalom.

The 55-foot (17-meter) meteor’s airburst in February damaged buildings, causing injuries and fright among those in the region. As astronomers have been collecting fragments and calculating the orbit of the fireball, the incident put renewed attention on the need to monitor space rocks that could threaten the Earth.

Check out this Universe Today collection of videos showing what the meteor looked like.

Near-Earth Asteroid 2003 DZ15 to Pass Earth Monday Night

The currnet orbital position of asteroid 2003 DZ15. (Created by the author using JPL's Small-Body Database Browser).

The Earth will get another close shave Monday, when the 152 metre asteroid 2003 DZ15 makes a pass by our fair planet on the night of July 29th/30th at 3.5 million kilometres distant.  This is over 9 times the Earth-Moon distance and poses no threat to our world.

This is much smaller than 2.75 kilometre 1998 QE2, which sailed by (bad pun intended) our fair world at 5.8 million kilometres distant on May 31st, 2013. The Virtual Telescope Project will be presenting a free online event to monitor the passage of NEA 2003 DZ15 starting Monday night July 29th at 22:00 UT/6:00 PM EDT.

As of this writing, no efforts are currently known of by professional observatories to monitor its passage via radar, though Arecibo may attempt to ping 2003 DZ15 on Thursday.

An Apollo asteroid, 2003 DZ15 was confirmed by the Lowell Observatory and NEAT’s Mount Palomar telescope upon discovery in February 2003. This is its closest approach to the Earth for this century, although it will make a pass nearly as close to the Earth in 2057 on February 12th.

With a perihelion (closest approach to the Sun of) 0.63 A.U.s, 2003 DZ15 can also make close passes by the planet Venus as well, which it last did in 1988 and will do again on 2056.

Closest approach of 2003 DZ15 is set for 00:37 UT July 30th, or 8:37 PM EDT the evening of Monday, July 29th. Although it will only reach about +14th magnitude (based on an absolute magnitude of +22.2), and hence be out of range to all but the very largest Earthbound backyard telescopes, it’ll be fun to watch as it slowly drifts across the starry background live on the internet. Our own, “is worth tracking down from our own backyard” limit is an asteroid passing closer than our Moon, or is farther, but is brighter than +10th magnitude… such are the limitations of humid Florida skies!

Of course, an asteroid the size of 2003 DZ15 would spell a bad day for the Earth, were it headed our way. At an estimated 152 metres in size, 2003 DZ is over seven times the size of the Chelyabinsk meteor that exploded over Russia the day after Valentine ’s on February 15th of this year. While not in the class of an Extinction Level event, 2003 DZ15 would be in 60 to 190 metre size of range of the Tunguska impactor that struck Siberia in 1908.

All enough for us to take notice as 2003 DZ15 whizzes by, at a safe distance this time. NASA plans to launch a crewed mission sometime over the next decade to study an asteroid, and  perhaps retrieve a small NEA and place it in orbit about Earth’s Moon. Such efforts may go a long way in understanding and dealing with such potentially hazardous space rocks, when and if the “big one” is discovered heading our way. We’re the Earth’s first line of defense- and unlike the ill-fated dinosaurs, WE’VE got a space program and can do something about it!

With Russian Meteor Fresh In Everyone’s Memory, ESA Opens An Asteroid Monitoring Center

The two main smoke trails left by the Russian meteorite as it passed over the city of Chelyabinsk. Credit: AP Photo/Chelyabinsk.ru

It’s been about three months since that infamous meteor broke up over Chelyabinsk, Russia. In that time, there’s been a lot of conversation about how we can better protect ourselves against these space rocks with a potentially fatal (from humanity’s perspective) gravitational attraction to Earth.

This week, the European Space Agency officially inaugurated a “NEO Coordination Centre” that is intended to be asteroid warning central in the European Union. It will be the hub for early warnings on near-Earth objects (hence the ‘NEO’ in the name) under ESA’s space situational awareness program.

ESA estimates that of the 600,000 asteroids and comets that orbit the Sun, about 10,000 of them are NEOs. (They define NEOs as asteroids or comets with sizes of several feet up to several tens of miles.)

NASA, of course, is also gravely concerned about the threat NEOs present. Its administrator, Charles Bolden, talked about this at a Congressional hearing about asteroids in March.

Before delving into the threat, Bolden took a metaphorical deep breath to talk about the dozens of asteroids — a meter or larger — that slam into Earth’s atmosphere each year. Most of them burn up harmlessly, and further, 80 tons of dust-like material rain on Earth daily.

A notable meteor that did cause some damage took place about 100 years ago, in 1908, when an object broke up over an isolated area in Russia and flattened trees for miles. Bolden characterized that as a statistically one-in-a-thousand year event, but added that the “real catch” is this type of event could happen at any time.

NASA, however, is seeking out those that cause a threat. It is supposed to find 90 per cent of asteroids 140 meters or larger by 2020, and is making progress towards that goal. (By comparison, the Chelyabinsk object was estimated at 17 to 20 meters.)

Nine radar images of near-Earth asteroid 2007 PA8 obtained between by NASA's 230-foot-wide (70-meter) Deep Space Network antenna. The part of the asteroid closest to the antenna is at top. Credit: NASA/JPL-Caltech
Nine radar images of near-Earth asteroid 2007 PA8 obtained between by NASA’s 230-foot-wide (70-meter) Deep Space Network antenna. The part of the asteroid closest to the antenna is at top. Credit: NASA/JPL-Caltech

So how to best monitor the threat? Bolden outlined a few ideas: crowdsourcing, coordinating with other federal agencies and making use of automatic feeds from different telescopes throughout the world (as NASA does right now.)

Bolden emphasized that none of the asteroids we have found is on a collision course with the Earth. Still, NASA and other science experts are not complacent.

In the same hearing, John Holdren — the president’s assistant on science and technology — recommended following a National Academy of Sciences report to spend upwards of $100 million a year on asteroid detection and characterization. To mitigate the threat, Holdren further recommended a visit to an asteroid by 2025, which would perhaps cost $2 billion.

Meteor Blast Rocks Russia

A bright meteor witnessed over Russia on Feb. 15, 2013 (RussiaToday)

This just in: reports of bright meteors and loud explosions have been coming from Russia, with the incredible video above showing what appears to be a meteor exploding in the atmosphere on the morning of Friday, Feb. 15.

According to Reuters the objects were seen in the skies over the Chelyabinsk and Sverdlovsk regions.

“Preliminary indications are that it was a meteorite rain,” an emergency official told RIA-Novosti. “We have information about a blast at 10,000-meter (32,800-foot) altitude. It is being verified.” UPDATE: The Russian Academy of Sciences has estimated that the single 10-ton meteor entered the atmosphere at around 54,000 kph (33,000 mph) and disintegrated 30-50 kilometers (18-32 miles) up. Nearly 500 people have been injured, most by broken glass — at least 3 in serious condition. (AP)

Chelyabinsk is 930 miles (1,500 km) east of Moscow, in Russia’s Ural Mountains.

Preliminary reports on RT.com state that the meteorite “crashed into a wall near a zinc factory, disrupting the city’s internet and mobile service.” 150 minor injuries have also been reported from broken glass and debris created by the explosion’s shockwave.

ADDED: More videos below:

Contrails and explosions can be heard here, with breaking glass:

Over a city commercial district:

And yet another dash cam:

Watch the garage door get blown in at the 30-second mark:

Here’s a great summary from Russia Today

This event occurs on the same day that Earth is to be passed at a distance of 27,000 km by the 45-meter-wide asteroid 2012 DA14. Coincidence? Most likely. But – more info as it comes!

Read what Phil Plait has to say about this on his Bad Astronomy blog here.

News source: Reuters. H/T to Matt Arnold.