There are Mysteries at Venus. It’s Time for an Astrobiology Mission

NASA's Magellan spacecraft captured this image of Venusian craters. Image Credit: NASA/JPL

When scientists detected phosphine in Venus’ atmosphere in 2020, it triggered renewed, animated discussions about Venus and its potential habitability. It would be weird if the detection didn’t generate interest since phosphine is a potential biomarker. So people were understandably curious. Unfortunately, further study couldn’t confirm its presence.

But even without phosphine, Venus’ atmosphere is full of chemical intrigue that hints at biological processes. Is it time to send an astrobiology mission to our hellish sister planet?

Continue reading “There are Mysteries at Venus. It’s Time for an Astrobiology Mission”

Webb Finds Icy Complex Organic Molecules Around Protostars: Ethanol, Methane, Formaldehyde, Formic Acid and Much More

Astronomers have used JWST to study the environments around 30 young protostars and found a vast collection of icy organic molecules. A recent survey identified methane, sulfur dioxide, ethanol, formaldehyde, formic acid, and many more. Image Credit: NASA/ESA/STScI

In the quest to understand how and where life might arise in the galaxy, astronomers search for its building blocks. Complex Organic Molecules (COMs) are some of those blocks, and they include things like formaldehyde and acetic acid, among many others. The JWST has found some of these COMs around young protostars. What does this tell astronomers?

Continue reading “Webb Finds Icy Complex Organic Molecules Around Protostars: Ethanol, Methane, Formaldehyde, Formic Acid and Much More”

ESA’s Ariel Mission is Approved to Begin Construction

An artist's impression of the ESA's Ariel space telescope. It'll examine 1,000 exoplanet atmospheres. Image Credit: ESA

We’re about to learn a lot more about exoplanets. The ESA has just approved the construction of its Ariel mission, which will give us our first large survey of exoplanet atmospheres. The space telescope will help us answer fundamental questions about how planets form and evolve.

Continue reading “ESA’s Ariel Mission is Approved to Begin Construction”

Adolescent Galaxies are Incandescent and Contain Unexpected Elements

Light from 23 distant galaxies, identified with red rectangles in the Hubble Space Telescope image at the top, were combined to capture incredibly faint emission from eight different elements, which are labelled in the JWST spectrum at the bottom. Although scientists regularly find these elements on Earth, astronomers rarely, if ever, observe many of them in distant galaxies, especially nickel. Image Credit: Aaron M. Geller, Northwestern, CIERA + IT-RCDS

If the Universe has adolescent galaxies, they’re the ones that formed about 2 to 3 billion years after the Big Bang. New research based on the James Webb Space Telescope shows that these teenage galaxies are unusually hot. Not only that, but they contain some unexpected chemical elements. The most surprising element found in these galaxies is nickel.

Continue reading “Adolescent Galaxies are Incandescent and Contain Unexpected Elements”

JWST Takes a Detailed Look at Jupiter’s Moon Ganymede

Juno captured this image of Ganymede in July 2022. Now the JWST is taking a look at our Solar System's largest moon. Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill

Nature doesn’t conform to our ideas of neatly-contained categories. Many things in nature blur the lines we try to draw around them. That’s true of Jupiter’s moon Ganymede, the largest moon in the Solar System.

The JWST took a closer look at Ganymede, the moon that’s kind of like a planet, to understand its surface better.

Continue reading “JWST Takes a Detailed Look at Jupiter’s Moon Ganymede”

The JWST Just Found Carbon on Europa, Boosting the Moon’s Potential Habitability

This reprocessed colour view of Jupiter’s moon Europa was made from images taken by NASA's Galileo spacecraft in the late 1990s. Credit: NASA/JPL-Caltech

Most planets and moons in the Solar System are clearly dead and totally unsuitable for life. Earth is the only exception. But there are a few worlds where there are intriguing possibilities of life.

Chief among them is Jupiter’s moon Europa, and the JWST just discovered carbon there. That makes the moon and its subsurface ocean an even more desirable target in the search for life.

Continue reading “The JWST Just Found Carbon on Europa, Boosting the Moon’s Potential Habitability”

Strong Evidence that Supermassive Black Holes Affect Their Host Galaxy’s Chemistry

This is a composite image of the spiral galaxy Messier 77 (NGC 1068), as observed by ALMA and the Hubble Space Telescope. Red and blue are different chemicals. Red are cyanide radicals concentrated mostly in the center and a large-scale ring-shaped gas structure, but also along the bipolar jets extending from the center towards the northeast (upper left) and southwest (lower right). Blue is carbon monoxide isotopes which avoid the central region. Image Credit: ALMA (ESO/NAOJ/NRAO), NASA/ESA Hubble Space Telescope, T. Nakajima et al.

Supermassive Black Holes (SMBHs) are impossible to ignore. They can be billions of times more massive than the Sun, and when they’re actively consuming stars and gas, they become luminous active galactic nuclei (AGN.) A galaxy’s center is a busy place, with the activity centred on the SMBH.

New research provides strong evidence that while going about their business, SMBHs alter their host galaxy’s chemistry.

Continue reading “Strong Evidence that Supermassive Black Holes Affect Their Host Galaxy’s Chemistry”

The Heaviest Element Ever Seen in an Exoplanet’s Atmosphere: Barium

exoplanet hot jupiter transiting its star
This artist’s impression shows an ultra-hot exoplanet as it is about to transit in front of its host star. Credit: ESO

Astronomers have spotted barium in the atmosphere of a distant exoplanet. With its 56 protons, you have to run your finger further down the periodic table than astronomers usually do to find barium. What does finding such a heavy element in an exoplanet atmosphere mean?

It means we’re still learning how strange exoplanets can be.

Continue reading “The Heaviest Element Ever Seen in an Exoplanet’s Atmosphere: Barium”

Scientists Discover a New Way Exoplanets Could Make Oxygen; Unfortunately, it Doesn’t Require Life

Oxygen is a valuable biosignature because Earth is oxygen-rich, and because life made all that oxygen. But if we find oxygen in an exoplanet atmosphere does that mean life made it? Or is there an abiotic source of oxygen? Image Credit: NASA

Finding oxygen in an exoplanet’s atmosphere is a clue that life may be at work. On Earth, photosynthetic organisms absorb carbon dioxide, sunlight, and water and produce sugars and starches for energy. Oxygen is the byproduct of that process, so if we can detect oxygen elsewhere, it’ll generate excitement. But researchers have also put pressure on the idea that oxygen in an exoplanet’s atmosphere indicates life. It’s only evidence of life if we can rule out other pathways that created the oxygen.

But scientists can’t rule them out.

Continue reading “Scientists Discover a New Way Exoplanets Could Make Oxygen; Unfortunately, it Doesn’t Require Life”

It’s Not Conclusive, But Methane is Probably the Best Sign of Life on Exoplanets

Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)
This is Kepler 186f, an exoplanet in the habitable zone around a red dwarf. We've found many planets in their stars' habitable zones where they could potentially have surface water. But it's a fairly crude understanding of true habitability. Image Credit: NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)

When the James Webb Space Telescope aims at exoplanet atmospheres, it’ll use spectroscopy to identify chemical elements. One of the things it’s looking for is methane, a chemical compound that can indicate the presence of life.

Methane is a compelling biosignature. Finding a large amount of methane in an exoplanet’s atmosphere might be our most reliable indication that life’s at work there. There are abiotic sources of methane, but for the most part, methane comes from life.

But to understand methane as a potential biosignature, we need to understand it in a planetary context. A new research letter aims to do that.

Continue reading “It’s Not Conclusive, But Methane is Probably the Best Sign of Life on Exoplanets”