Every now and then, astronomers will detect an odd kind of radio signal. So powerful it can outshine a galaxy, but lasting only milliseconds. They are known as fast radio bursts (FRBs). When they were first discovered a couple of decades ago, we had no idea what might cause them. We weren’t even sure if they were astronomical in origin. FRB’s were so localized and so short-lived, it was difficult to gather data on them. But with wide-field radio telescopes such as CHIME we can now observe FRBs regularly and have a pretty good idea of their source: magnetars.
Continue reading “Are Fast Radio Bursts Caused by Interstellar Objects Crashing Into Neutron Stars?”Now Astronomers have Discovered “Ultra-Fast Radio Bursts” Lasting Millionths of a Second
A recent study published in Nature Astronomy examines the discovery of what astronomers are dubbing “ultra-fast radio bursts”, a new type of fast radio bursts (FRBs) that the team determined lasts for a mind-boggling ten millionths of a second or less. Traditionally, FRBs have been found to last only thousandths of a second, but this study builds on a 2021 study that hypothesized FRBs could possibly last for millionths of a second. This also comes after astronomers recently announced the discovery of the oldest and farthest FRB ever observed, approximately 8 billion light-years from Earth.
Continue reading “Now Astronomers have Discovered “Ultra-Fast Radio Bursts” Lasting Millionths of a Second”Gravitational Waves From Colliding Neutron Stars Matched to a Fast Radio Burst
Fast Radio Bursts (FRBs) were first detected in 2007 (the Lorimer Burst) and have remained one of the most mysterious astronomical phenomena ever since. These bright radio pulses generally last a few milliseconds and are never heard from again (except in the rare case of Repeating FRBs). And then you have Gravitational Waves (GW), a phenomenon predicted by General Relativity that was first detected on September 14th, 2015. Together, these two phenomena have led to a revolution in astronomy where events are detected regularly and provide fresh insight into other cosmic mysteries.
In a new study led by the Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav), an Australian-American team of researchers has revealed that FRBs and GWs may be connected. According to their study, which recently appeared in the journal Nature Astronomy, the team noted a potential coincidence between a binary neutron star merger and a bright non-repeating FRB. If confirmed, their results could confirm what astronomers have expected for some time – that FRBs are caused by a variety of astronomical events.
Continue reading “Gravitational Waves From Colliding Neutron Stars Matched to a Fast Radio Burst”Astronomers Find 25 Fast Radio Bursts That Repeat on a Regular Basis
Like Gravitational Waves (GWs) and Gamma-Ray Bursts (GRBs), Fast Radio Bursts (FRBs) are one of the most powerful and mysterious astronomical phenomena today. These transient events consist of bursts that put out more energy in a millisecond than the Sun does in three days. While most bursts last mere milliseconds, there have been rare cases where FRBs were found repeating. While astronomers are still unsure what causes them and opinions vary, dedicated observatories and international collaborations have dramatically increased the number of events available for study.
A leading observatory is the Canadian Hydrogen Intensity Mapping Experiment (CHIME), a next-generation radio telescope located at the Dominion Radio Astrophysical Observatory (DRAO) in British Columbia, Canada. Thanks to its large field of view and broad frequency coverage, this telescope is an indispensable tool for detecting FRBs (more than 1000 sources to date!) Using a new type of algorithm, the CHIME/FRB Collaboration found evidence of 25 new repeating FRBs in CHIME data that were detected between 2019 and 2021.
Continue reading “Astronomers Find 25 Fast Radio Bursts That Repeat on a Regular Basis”Canada's CHIME is Getting More Observatories to Search for Fast Radio Bursts
In 2017, the Canadian Hydrogen Intensity Mapping Experiment (CHIME) began to gather light from the Universe to address some of the biggest questions and astrophysics and cosmology. Located at the Dominion Radio Astrophysical Observatory (DRAO) in British Columbia, this interferometric radio telescope has been a game-changer for studying Fast Radio Bursts (FRBs), which remain one of the most mysterious cosmic mysteries facing astronomers today.
In the near future, CHIME will be getting an expansion that will help it more accurately identify where FRBs are coming from. This will consist of a new radio telescope outrigger located at the SETI Institute’s Hat Creek Radio Observatory (HCRO), new outriggers near Princeton, British Columbia, and at the Green Bank Observatory in West Virginia. These will work with the main CHIME telescope to localize CHIME-detected FRBs precisely in the night sky.
Continue reading “Canada's CHIME is Getting More Observatories to Search for Fast Radio Bursts”Fast Radio Bursts can now be Tracked in Real-Time
Located in the Okanagan Valley outside of Penticton, British Columbia, there is a massive radio observatory dedicated to observing cosmic radio phenomena. It’s called the Canadian Hydrogen Intensity Mapping Experiment (CHIME), a cylindrical parabolic radio telescope that looks like what snowboarders would call a “half-pipe.” This array is part of the Dominion Radio Astrophysical Observatory (DRAO), overseen by the National Research Council (NRC).
Originally, the observatory was meant to detect radio waves from neutral hydrogen gas in the early Universe. Today, it is used for other objectives, such as detecting and studying Fast Radio Bursts (FRBs). Since it became operational, CHIME scientists have been busy sorting through terabytes of data to pinpoint signals, often finding several in a single day. To assist with all this data-mining and coordinate CHIMEs efforts with other facilities worldwide, scientists from McGill University have developed a new system for sharing the enormous amount of data CHIME generates.
Continue reading “Fast Radio Bursts can now be Tracked in Real-Time”CHIME Detected Over 500 Fast Radio Burst in its First Year, Providing new Clues to What’s Causing Them
Much like Dark Matter and Dark Energy, Fast Radio Burst (FRBs) are one of those crazy cosmic phenomena that continue to mystify astronomers. These incredibly bright flashes register only in the radio band of the electromagnetic spectrum, occur suddenly, and last only a few milliseconds before vanishing without a trace. As a result, observing them with a radio telescope is rather challenging and requires extremely precise timing.
Hence why the Dominion Radio Astrophysical Observatory (DRAO) in British Columbia launched the Canadian Hydrogen Intensity Mapping Experiment (CHIME) in 2017. Along with their partners at the National Radio Astronomy Observatory (NRAO), the Massachusetts Institute of Technology (MIT), the Perimeter Institute, and multiple universities, CHIME detected more than 500 FRBs in its first year of operation (and more than 1000 since it commenced operations)!
Continue reading “CHIME Detected Over 500 Fast Radio Burst in its First Year, Providing new Clues to What’s Causing Them”Even More Repeating Fast Radio Bursts Discovered
In September of 2017, the Canadian Hydrogen Intensity Mapping Experiment (CHIME) in British Columbia commenced operations, looking for signs of Fast Radio Bursts (FRBs) in our Universe. These rare, brief, and energetic flashes from beyond our galaxy have been a mystery ever since the first was observed a little over a decade ago. Of particular interest are the ones that have been found to repeat, which are even rarer.
Before CHIME began collecting light from the cosmos, astronomers knew of only thirty FRBs. But thanks to CHIME’s sophisticated array of antennas and parabolic mirrors (which are especially sensitive to FRBs) that number has grown to close to 700 (which includes 20 repeaters). According to a new study led by CHIME researchers, this robust number of detections allows for new insights into what causes them.
Continue reading “Even More Repeating Fast Radio Bursts Discovered”A Rare Fast Radio Burst has been Found that Actually Repeats Every 16 Days
A team of scientists in Canada have found a Fast Radio Burst (FRB) that repeats every 16 days. This is in stark contrast to other FRBs, which are more sporadic. Some of those sporadic FRBs occur in clusters, and repeat irregularly, but FRBs with a regular, repeatable occurrence are rare.
Continue reading “A Rare Fast Radio Burst has been Found that Actually Repeats Every 16 Days”Canadian Telescope Finds 13 More Fast Radio Bursts Including the Second One Ever Seen Repeating
Canadian scientists using the CHIME (Canadian Hydrogen Intensity Mapping Experiment) have detected 13 FRBs (Fast Radio Bursts), including the second-ever repeating one. And they think they’ll find even more.
CHIME is an innovative radio telescope in the Okanagan Valley region in British Columbia, Canada. It was completed in 2017, and its mission is to act as a kind of time machine. CHIME will help astronomers understand the shape, structure, and fate of the universe by measuring the composition of dark energy.
CHIME’s unique design also makes it well-suited for detecting fast radio bursts.
Continue reading “Canadian Telescope Finds 13 More Fast Radio Bursts Including the Second One Ever Seen Repeating”