China’s Maiden Lunar Rover ‘Yutu’ Rolls 6 Wheels onto the Moon – Photo and Video Gallery

China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer

China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer
Updated- See below Photo Gallery of Yutu’s descent to lunar surface on Dec. 15, 2013[/caption]

China’s first ever lunar rover rolled majestically onto the Moon’s soil on Sunday, Dec. 15, barely seven hours after the Chang’e-3 mothership touched down atop the lava filled plains of the Bay of Rainbows.

Check out the gallery of stunning photos and videos herein from China’s newest space spectacular atop stark lunar terrain.

The six wheeled ‘Yutu’, or Jade Rabbit, rover drove straight off a pair of ramps at 4:35 a.m. Beijing local time and sped right into the history books as it left a noticeably deep pair of tire tracks behind in the loose lunar dirt.

China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: CCTV
China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: CCTV

The stunning feat was broadcast on China’s state run CCTV using images transmitted to Earth from cameras mounted on the Chang’e-3 lander and aimed directly at the rear of the departing moon buggy.

Watch this YouTube video from CCTV showing the separation of ‘Yutu’ from the lander:

The scene was reminiscent of NASA’s Mars Sojourner rover driving of the Mars Pathfinder lander back in 1997.

Chinese space engineers based at the Beijing Aerospace Control Center (BACC) carefully extended a pair of ramps out from the lander in a complex process, drove Yutu onto the ramps and then gently lowered them onto the moon’s soil.

China’s Change’-3 mission had just safely soft landed on the Moon hours only earlier on Saturday, Dec. 14 at 9:11 p.m. Beijing time, 8:11 EST at the Sinus Iridum region, or Bay of Rainbows.

China thus became only the 3rd country in the world to successfully land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

A video grab shows China's first moon rover, Yutu, or Jade Rabbit, separating from Chang'e-3 moon lander early Dec. 15, 2013. The six-wheeled rover separated from the lander early on Sunday, several hours after the Chang'e-3 probe soft-landed on the lunar surface.  Credit: Xinhua
A video grab shows China’s first moon rover, Yutu, or Jade Rabbit, separating from Chang’e-3 moon lander early Dec. 15, 2013. The six-wheeled rover separated from the lander early on Sunday, several hours after the Chang’e-3 probe soft-landed on the lunar surface. Credit: Xinhua

It’s been nearly four decades since the prior lunar landing was accomplished by the Soviet Union’s Luna 24 sample return spacecraft.

Read my detailed account of the Chang’e-3 landing on Dec. 14 – here.

1st post landing image transmitted from the Moon’s surface by China’s Chang’e-3 lunar lander on Dec. 14, 2013. Credit: CCTV/post processing by Marco Di Lorenzo/Ken Kremer
1st post landing image transmitted from the Moon’s surface by China’s Chang’e-3 lunar lander on Dec. 14, 2013. Credit: CCTV/post processing by Marco Di Lorenzo/Ken Kremer

Watch this YouTube video compilation of CCTV’s Dec. 14 landing coverage:

Over 4600 images have already been transmitted by Chang’e-3 in less than a day on the Moon.

Tomorrow, the 120 kg Yutu rover will begin driving in a circle around the 1200 kg lander.

And the pair of lunar explorers will snap eagerly awaited portraits of one another!

The rover and lander are equipped with 8 science instruments multiple cameras, spectrometers, an optical telescope, ground penetrating radar and other sensors to investigate the lunar surface and composition.

The radar instrument installed at the bottom of the rover can penetrate 100 meters deep below the surface to study the Moon’s structure and composition in unprecedented detail, according to Ouyang Ziyuan, senior advisor of China’s lunar probe project, in an interview on CCTV.

China’s Chang’e-3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken Kremer

Yutu moves towards drive off ramp still atop the Chang’e-3 lander, shown in this screen shot from early Dec. 15, 2013.  Credit: CCTV
Yutu moves towards drive off ramp still atop the Chang’e-3 lander, shown in this screen shot from early Dec. 15, 2013. Credit: CCTV
Yutu atop the transfer ramp to lunar surface. Credit: CCTV
Yutu atop the transfer ramp to lunar surface. Credit: CCTV
Yutu descends down the transfer ramp to lunar surface. Credit: CCTV
Yutu descends down the transfer ramp to lunar surface. Credit: CCTV
Image shows the trajectory of the lunar probe Chang'e-3 approaching the landing site  on Dec. 14.
Image shows the trajectory of the lunar probe Chang’e-3 approaching the landing site on Dec. 14.
China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua
China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua

China Scores Historic Success as Chang’e-3 Rover Lands on the Moon Today

Photo taken on Dec. 14, 2013 shows a picture of the moon surface taken by the on-board camera of lunar probe Chang'e-3 on the screen of the Beijing Aerospace Control Center in Beijing. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Credit: Xinhua/CCTV

Photo taken on Dec. 14, 2013 shows a picture of the moon surface taken by the on-board camera of lunar probe Chang’e-3 on the screen of the Beijing Aerospace Control Center in Beijing. This marks the first time that China has sent a spacecraft to soft land on the surface of an extraterrestrial body. Credit: Xinhua/CCTV
Story updated[/caption]

China scored a stunning, history making success with the successful touchdown of the ambitious Chang’e-3 probe with the ‘Yutu’ rover on the surface of the Moon today, Dec. 14, on the country’s first ever attempt to conduct a landing on an extraterrestrial body.

The dramatic Chang’e-3 soft landing on the lava filled plains of the Bay of Rainbows occurred at about 8:11 am EST, 9:11 p.m. Beijing local time, 1311 GMT today.

The monumental feat is the first landing on the Moon by any entity in nearly four decades. It was broadcast live on CCTV, China’s state run television network.

Note: Read my related new story with a photo gallery of Yutu’s 6 wheels rolling onto lunar soil – here

This maiden Chinese moon landing marks a milestone achievement for China and clearly demonstrates the country’s technological prowess.

chang'e-3 approach 1A tidal wave of high fives was unleashed by the huge teams of Chinese space engineers teams controlling the flight from the Beijing Aerospace Control Center (BACC).

There was also a huge sense of relief from the nail biting tension upon confirmation of the successful soft landing following many years of hard work and intense planning.

The Chang’e-3 mission entails the first soft landing on the Moon by anyone since the Soviet Union’s unmanned Luna 24 sample return vehicle touched down back in 1976.

Artists concept of the rocket assisted landing of China’s lunar probe Chang'e-3.
Artists concept of the rocket assisted landing of China’s lunar probe Chang’e-3.

China now joins an elite club of three, including the United States, who have mastered the critical technology required to successfully touch down on Earth’s nearest neighbor.

China’s space vision also stands in total contrast to the utter lack of vision emanating from so called political leaders in Washington, DC who stymie NASA and US science at every opportunity!

‘Yutu’ could very well serve as a forerunner for testing the key technologies required for a Chinese manned lunar landing in the next decade.

In one of its first acts from the surface, the landers life giving solar panels were deployed as planned within minutes of touchdown

The Chang’e-3 mission is comprised of China’s ‘Yutu’ lunar lander riding piggyback atop a much larger four legged landing vehicle.

The Chang’e-3 lander transmitted its first images of the moon in real time during its approach to the lunar surface during the final stages of the ongoing landing operation carried live by CCTV.

A total of 59 images were received instead of the 10 expected, said a CCTV commentator.

The voyage from the Earth to the Moon began 12 days ago with the flawless launch of Chang’e-3 atop China’s Long March 3-B booster at 1:30 a.m. Beijing local time, Dec. 2, 2013 (12:30 p.m. EST, Dec. 1) from the Xichang Satellite Launch Center, in southwest China.

Chang’e-3 made a rocket powered descent to the Moon’s surface today by firing the landing thrusters starting at the altitude of 15 km (9 mi) for a soft landing targeted to a preselected area on the Bay of Rainbows.

The powered descent was autonomous and took about 12 minutes.

The variable thrust engine can continuously vary its thrust power between 1,500 to 7,500 newtons. It was the biggest ever used by China in space said a commentator on CCTV.

The variable thrust engine enabled Chang’e-3 to reduce its deceleration as it approached the moon.

The descent was preprogrammed and controlled by the probe itself, not from the ground.

A descent camera was mounted on the lander’s belly

The 1200 kg lander is equipped with unprecedented terrain recognition equipment and software to hover above the landing site and confirm it was safe. This enabled the craft to avoid rock and boulder fields that could spell catastrophe even in the final seconds before touchdown if the vehicle were to land directly on top of them.

The descent engine fired until the lander was about hovering 100 meters above the lunar surface.

After determining it was safe to proceed, the lander descended further to about 3 meters. The engine then cut off and the lander free fell the remaining distance. The impact was cushioned by shock absorbers.

The solar panels soon unfurled. They are the most efficient Chinese solar panels available, said a CCTV commentator.

The Bay of Rainbows, or Sinus Iridum region, is located in the upper left portion of the moon as seen from Earth. You can see the landing site with your own eyes.

It was imaged in high resolution by China’s prior lunar mission – the Chang’e-2 lunar orbiter – and is shown in graphics herein.

The Yutu rover is also unfurling its solar panels and mast today.

Yutu, which translates as Jade Rabbit, stands 150 centimeters high, or nearly 5 feet – human height.

It weighs approximately 120 kilograms and sports a robotic arm equipped with advanced science instruments.

On Sunday, the six-wheeled ‘Yutu’ rover with a rocker bogie suspension similar to NASA’s Mars rovers will be lowered in stages to the moon’s surface in a complex operation and then drive off a pair of landing ramps to explore the moon’s terrain for at least three months.

In what promises to be a space spectacular, the lander and rover are expected to photograph one another soon after Yutu rolls onto the Bay of Rainbows.

They will work independently.

The rover and lander are equipped with multiple cameras, spectrometers, an optical telescope, ground penetrating radar and other sensors to investigate the lunar surface and composition.

The radar instrument installed at the bottom of the rover can penetrate 100 meters deep below the surface to study the Moon’s structure and composition in unprecedented detail, according to Ouyang Ziyuan, senior advisor of China’s lunar probe project, in an interview on CCTV.

The Chang’e-3 lander is powered by a combination of solar arrays and a nuclear battery said CCTV, in order to survive the two week long lunar nights.

Chinese space officials expect the lander will function a minimum of 1 year.

ESA’s network of tracking stations are providing crucial support to China for Chang’e-3 from launch to landing.

China’s Chang’e-3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken Kremer

China's lunar probe Chang'e-3 is expected to land on Sinus Iridum (Bay of Rainbows) of the moon in mid-December 2013. Credit: Xinhua
China’s lunar probe Chang’e-3 landed on Sinus Iridum (Bay of Rainbows) of the moon on 14 December 2013. Credit: Xinhua

China’s Maiden Moon Rover Mission Chang’e 3 Achieves Lunar Orbit

Artists concept of the Chinese Chang'e 3 lander and rover on the lunar surface. Credit: Beijing Institute of Spacecraft System Engineering

China’s maiden moon landing probe successfully entered lunar orbit on Friday, Dec. 6, following Sunday’s (Dec. 1) spectacular blastoff – setting the stage for the historic touchdown attempt in mid December.

Engineer’s at the Beijing Aerospace Control Center (BACC) commanded the Chang’e 3 lunar probe to fire its braking thrusters for 361 seconds, according to China’s Xinhua news agency.

The do or die orbital insertion maneuver proceeded precisely as planned at the conclusion of a four and a half day voyage to Earth’s nearest neighbor.

China’s ‘Yutu’ lunar lander is riding piggyback atop the four legged landing probe during the history making journey from the Earth to the Moon.

Liftoff of China’s first ever lunar rover on Dec. 2 local China time from the Xichang Satellite Launch Center, China. Credit: CCTV
Liftoff of China’s first ever lunar rover on Dec. 2 local China time (Dec. 1 EST) from the Xichang Satellite Launch Center, China. Credit: CCTV

The critical engine burn placed Chang’e 3 into its desired 100 kilometer (60 mi.) high circular orbit above the Moon’s surface at 5:53 p.m. Friday, Beijing Time (4:53 a.m. EST).

An engine failure would have doomed the mission.

Chang’e 3 is due to make a powered descent to the Moon’s surface on Dec. 14, firing the landing thrusters at an altitude of 15 km (9 mi) for a soft landing in a preselected area called the Bay of Rainbows or Sinus Iridum region.

The Bay of Rainbows is a lava filled crater located in the upper left portion of the moon as seen from Earth. It is 249 km in diameter.

The variable thrust engine can continuously vary its thrust power between 1,500 to 7,500 newtons, according to Xinhua.

The lander is equipped with terrain recognition equipment and software to avoid rock and boulder fields that could spell catastrophe in the final seconds before touchdown if vehicle were to land directly on top of them.

The voyage began with the flawless launch of Chang’e 3 atop China’s Long March 3-B booster at 1:30 a.m. Beijing local time, Dec. 2, 2013 (12:30 p.m. EST, Dec. 1) from the Xichang Satellite Launch Center, in southwest China.

If successful, the Chang’e 3 mission will mark the first soft landing on the Moon since the Soviet Union’s unmanned Luna 24 sample return vehicle landed nearly four decades ago back in 1976.

Chang’e 3 targeted lunar landing site in the Bay of Rainbows or Sinus Iridum
Chang’e 3 targeted lunar landing site in the Bay of Rainbows or Sinus Iridum

The name for the ‘Yutu’ rover – which means ‘Jade Rabbit’ – was chosen after a special naming contest involving a worldwide poll and voting to select the best name.

‘Yutu’ stems from a Chinese fairy tale, in which the goddess Chang’e flew off to the moon taking her little pet Jade rabbit with her.

The six-wheeled ‘Yutu’ rover will be lowered in stages to the moon’s surface in a complex operation and then drive off a pair of landing ramps to explore the moon’s terrain.

Yutu measures 150 centimeters high and weighs approximately 120 kilograms.

The rover and lander are equipped with multiple cameras, spectrometers, an optical telescope, radar and other sensors to investigate the lunar surface and composition.

Spectacular view of Chang’e 3 thruster firings after separation from upper stage with Earth in the background. Credit: CCTV
Spectacular view of Chang’e 3 thruster firings after separation from upper stage with Earth in the background. Credit: CCTV

Chang’e 3 marks the beginning of the second phase of China’s lunar robotic exploration program.

The lander follows a pair of highly successful lunar orbiters named Chang’e 1 and 2 which launched in 2007 and 2010.

The next step will be an unmanned lunar sample return mission, perhaps by 2020.

China’s Chang’e 3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a similarly spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for continuing Chang’e 3, LADEE, MAVEN and MOM news and Ken’s SpaceX and MAVEN launch reports from on site at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

…………….

Learn more about Chang’e 3, SpaceX, MAVEN, MOM, Mars rovers, Orion and more at Ken’s upcoming presentations

Dec 10: “Antares ISS Launch from Virginia, Mars and SpaceX Mission Update”, Amateur Astronomers Association of Princeton, Princeton University, Princeton, NJ, 8 PM

Dec 11: “Curiosity, MAVEN and the Search for Life on Mars”, “LADEE & Antares ISS Launches from Virginia”, Rittenhouse Astronomical Society, Franklin Institute, Phila, PA, 8 PM

Spectacular Liftoff Thrusts China’s First Rover ‘Yutu’ to the Moon

Liftoff of China’s first ever lunar rover on Dec. 2 local China time from the Xichang Satellite Launch Center, China. Credit: CCTV

Liftoff of China’s first ever lunar rover on Dec. 2 local Beijing time from the Xichang Satellite Launch Center, China. Credit: CCTV
Story updated
See stunning launch video and rover deployment animation below[/caption]

CAPE CANAVERAL, FL – China successfully launched its first ever lunar rover bound for the Moon’s surface aboard a Long March rocket today at 1:30 a.m. Beijing local time, Dec. 2, 2013 (12:30 p.m. EST, Dec. 1) from the Xichang Satellite Launch Center in southwest China.

The spectacular night time blastoff of the Long March-3B carrier rocket with the ‘Yutu’ rover was carried live on China’s state run CCTV enabling viewers worldwide to watch the dramatic proceedings as they occurred in real time – including fantastic imagery of booster jettison, spacecraft separation, thruster firings and exquisite views of Earth from cameras aboard the booster.

See the stunning launch video below.

Video caption: China’s Chang’e-3 Lunar Probe Launch on Dec 2, 2013. Credit: CCTV

The entire flight sequence proceeded flawlessly and placed the combined Chang’e 3 lunar landing vehicle and ‘Yutu’ rover on the desired earth-moon transfer orbit following spacecraft separation and unfurling of the life giving solar panels and landing legs, announced Zhang Zhenzhong, director of the Xichang center.

“The Chang’e probe is on its way to the moon, of course, is a symbol of China’s national prowess,” said Zhang Zhenzhong through a translator during the live CCTV broadcast. “Of course, it’s a symbol of China’s national power and prowess.”

The three stage 55 meter (185 foot) tall Long March-3B carrier rocket was uniquely equipped with a quartet of strap on liquid fueled boosters to provide the additional liftoff thrust required for the four day journey to Earth’s Moon.

Spectacular view of Chang’e 3 thruster firings after separation from upper stage with Earth in the background. Credit: CCTV
Spectacular view of Chang’e 3 thruster firings after separation from upper stage with Earth in the background. Credit: CCTV

The name for the ‘Yutu’ rover – which translates as ‘Jade Rabbit’ – was chosen after a special naming contest involving a worldwide poll and voting to select the best name.

‘Yutu’ stems from a Chinese fairy tale, in which the goddess Chang’e flew off to the moon taking her little pet Jade rabbit with her.

The Chang’e 3 lander will fire thrusters to enter lunar orbit on Dec. 6.

It is due to make a powered descent to the lunar surface on Dec. 14, firing thrusters at an altitude of 15 km (9 mi) for touchdown in a preselected area called the Bay of Rainbows or Sinus Iridum region.

Artists concept of China’s ‘Yutu’ rover traversing the lunar surface. Credit: CCTV
Artists concept of China’s ‘Yutu’ rover traversing the lunar surface. Credit: CCTV

If successful, the Chang’e 3 mission will mark the first soft landing on the Moon since the Soviet Union’s unmanned Luna 24 sample return vehicle landed nearly four decades ago back in 1976.

‘Yutu’ is sitting atop the 4 legged landing probe during the launch and voyage to the Moon.

A complex maneuver will be used to deploy the six-wheeled ‘Jade Rabbit’ rover. It will be lowered in stages to the moon’s surface and then drive off a pair of landing ramps to explore the moon’s terrain.

Watch this short CCTV news report with a cool animation showing how the ‘Yutu’ rover reaches the lunar surface.

‘Jade Rabbit’ measures 150 centimeters high and weighs approximately 120 kilograms.

The rover and lander are equipped with multiple cameras, spectrometers, an optical telescope, radar and other sensors to investigate the lunar surface and composition.

One highly anticipated highlight will be when the lander and deployed Jade Rabbit rover image each other on the surface.

The rover is expected to continue operating for at least three months.

The Chang’e 3 landing mission marks the beginning of the second phase of China’s lunar robotic exploration program.

It follows a pair of highly successful lunar orbiters named Chang’e 1 and 2 which launched in 2007 and 2010.

The next step will be an unmanned lunar sample return mission, perhaps around 2020.

China’s Chang’e 3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for continuing SpaceX, MAVEN and MOM news and Ken’s SpaceX and MAVEN launch reports from on site at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

China Unveils High Resolution Global Moon Map

China Publishes High Resolution Full Moon map from Chang'e-2 Lunar Orbiter. Chinese scientists assembled a full moon map using images captured by the Chang’e-2 spacecraft with an an unprecedented resolution of 7-meters. Credit: China Space Program

[/caption]

Chinese scientists have assembled the highest resolution map ever created of the entire Moon and unveiled a series of global Moon images on Monday, Feb. 6.

The composite Lunar maps were created from over 700 individual images captured by China’s Chang’e-2 spacecraft and released by the country’s State Administration of Science, Technology and Industry for National Defence (SASTIND), according to reports from the state run Xinhua and CCTV new agencies.

“The map and images are the highest-resolution photos of the entirety of the Moon’s surface to be published thus far,” said Liu Dongkui, deputy chief commander of China’s lunar probe project, reports Xinhua.

Of course there are much higher resolution photos of numerous individual locations on the Moon taken from orbit by the spacecraft of other countries and from the surface by NASA’s Apollo lunar landing astronauts as well as unmanned Russian & American lunar landers and rovers.

China unveils High Resolution Global Moon map from Chang'e-2 Lunar Orbiter
Credit: China Space Program

Chang’e-2 is China’s second lunar probe and achieved orbit around our nearest neighbor in space in October 2010. It was launched on Oct. 1, 2010 and is named after a legendary Chinese moon goddess.

The images were snapped between October 2010 and May 2011 using a charge-coupled device (CCD) stereo camera as the spacecraft flew overhead in a highly elliptical orbit ranging from 15 km to 100 km altitude.

The Chang’e-2 maps have a resolution of 7 meters, which is 17 times greater than from China’s first lunar orbiter; Chang’e-1, launched in 2007.

Global Lunar Map from China’s Chang'e-2 Lunar Orbiter. Credit: China Space Program

In fact the maps are detailed enough that Chinese scientists were able to detect traces of the Apollo landers, said Yan Jun, chief application scientist for China’s lunar exploration project.


Chang’e-2 also captured high resolution photos of the “Sinus Iridum”area , or Bay of Rainbows, where China may land their next Moon mission. The camera had the ability to resolve features as small as 1 meter across at the lowest altitude.

The satellite left lunar orbit in June 2011 and is currently orbiting the moon’s second Lagrange Point (L2), located more than 1.5 million km away from Earth.

Chinese space program officials hope for a 2013 liftoff of the Chang’e-3 lunar rover, on what would be China’s first ever landing on another celestial body. China’s next step beyond the rover may be to attempt a lunar sample return mission in 2017.

Demonstrating the ability to successfully conduct an unmanned lunar landing is a key milestone that must be achieved before China can land astronauts on the Moon, perhaps within the next decade.

NASA’s twin GRAIL spacecraft recently achieved Lunar orbit over the New Year’s weekend. The duo of probes were just renamed as “Ebb and Flow” – the winning entries in an essay naming contest submitted by 4th Grade US students from Bozeman, Montana.

At this time NASA does not have the funding or an approved robotic lunar landing mission, due to severe budget cuts.And even worse NASA cuts will be announced shortly !

Russia hopes to send the Lunar Glob spacecraft to land on the Moon around 2015.

Since the United States has unilaterally scuttled its plans to return American astronauts to the Moon’s surface, it’s very possible that the next flag planted on the Moon by humans will be Chinese.

Shenzhou-8 lands after China’s 1st Space Docking propelling Ambitious Human Spaceflight Agenda

The re-entry capsule of the Shenzhou-8 spacecraft is found at a landing site located

[/caption]

China’s historic first docking mission in space ended in a complete success today (Nov. 17) following the safe landing of the unmanned Shenzhou-8 in Inner Mongolia. Today’s landing will robustly propel China’s space program forward and sets the stage for an ambitious agenda of human spaceflight missions in 2012 to the Tiangong-1 Space Lab and eventually to a hefty 100 ton Earth orbiting Space Station to be assembled by 2020.

Shenzhou-8 was launched to low Earth orbit on Nov. 1 atop a Long March 2F booster from the Jiuquan Satellite Launch Center in the Gobi Desert and successfully conducted China’s first ever rendezvous and docking mission in space with the nation’s Tiangong-1 Space Lab module on Nov. 3 while orbiting some 343 kilometers in altitude above Earth.

Gen. Chang Wanquan, the Commander in Chief of China’s human spaceflight program said, “The Shenzhou-8 capsule has safely returned to the main landing site at Inner Mongolia and the Tiangong-1/Shenzhou-8 rendezvous and docking mission has achieved full success!”

The re-entry capsule of Shenzhou-8 spacecraft after landing in Inner Mongolia on Nov. 17,2011.

Chang leads the China Manned Space Engineering (CMSE) Project, the nation’s human spaceflight program. He is the Commanding Officer of the Tiangong-1/Shenzhou-8 Rendezvous and Docking Mission Headquarters, and director of the PLA (Peoples Liberation Army) General Armaments Department. The People Liberation Army directs China’s human spaceflight program.

Shenzhou-8 landed today at 7:30 pm. Beijing time in central Asia after flying nearly 17 days in earth orbit. Recovery crews reached the capsule within a few minutes of the parachute assisted touchdown.

Most of the flight was spent linked up to the Tiangong-1 Space Lab module – China’s first prototype space station.

Graphic shows the procedure of rendezvous and docking of Shenzhou-8 spacecraft and Tiangong-1 space lab module. Credit: Xinhua/Lu Zhe

After 12 days of joint orbital operations, Shenzhou-8 carried out a 2nd docking test to enable Chinese space engineers and mission controllers to gain further practice and experience in mastering the complex techniques involved in rendezvous and docking in space.

Shenzhou-8 disengaged from Tiangong-1 on Nov. 14, backed off to a distance of 140 meters (460 ft) and then carried out a re-docking about 30 minutes later. Controllers at the Beijing Aerospace Control Center monitored systems as Shenzhou-8 automatically re-approached Tiangong-1 for the second link up.

The main purpose of the second docking test was to confirm the performance of the rendezvous and docking procedures and hardware on Shenzhou-8 and Tiangong-1 under conditions of the glare of sunlight which are different compared to nighttime conditions of the first docking attempt.

Although the Shenzhou-8 flew unmanned during this flight, the capsule was fully human rated – even food and water are stored on board to simulate the presence of a human crew.

Today’s success sets the stage for possibly two Chinese manned missions to follow in 2012, namely Shenzhou-9 and Shenzhou-10.

Each Shenzhou can carry two or three astronauts. One of the missions is highly likely to include the first female Chinese astronaut.

China's unmanned spacecraft Shenzhou-8 landed by parachute in north China Thursday evening, Nov. 17

Read Ken’s features about Shenzhou-8 & Tiangong-1
China completes 2nd Docking to Space Lab and sets Path to Manned flights in 2012
China Technology Surges Forward with Spectacular First Docking in Space
China launches Shenzhou-8 bound for Historic 1st Docking in Space
Shenzhou-8 rolled out for Blastoff to China’s 1st Space Station on November 1
Bizarre Video: China’s Tiangong 1 Space Lab Animation set to ‘America the Beautiful’ Soundtrack
China Blasts First Space Lab Tiangong 1 to Orbit
China set to ‘Leap Forward in Space’ as Tiangong 1 Rolls to Launch Pad

China completes 2nd Docking to Space Lab and sets Path to Manned flights in 2012

Photo taken on Nov. 14, 2011 shows the image of Shenzhou-8 spacecraft on the electronic screen in the Beijing Aerospace Flight Control Center, in Beijing, China. The image was shot by a video camera on Tiangong-1 just after Shenzhou-8's separation from Tiangong-1. China's Shenzhou-8 unmanned spacecraft successfully re-docked with the Tiangong-1, a module of the country's planned space lab on Monday, Nov. 14, 2011 Credit: Xinhua/Wang Jianmin

[/caption]

Chinese space prowess took another major leap forward today (Nov. 14) when the unmanned Shenzhou-8 capsule successfully re-docked with China’s Tiangong-1 space lab while speeding through space and orbiting some 343 km above Earth. Today’s events pave the way for China to rapidly ramp up their human space program and loft up to two manned flights to the space lab module in 2012.

The re-docking marked only the 2nd time that China had accomplished a successful space docking, a critical technical milestone that opens the door to China’s real ambition of assembling a 100 ton operational Space Station in low Earth orbit by 2020 – about the time when the ISS might be decommissioned.

China made space history on Nov. 3 by becoming only the 3rd country on Earth – after the US and the Russia – to accomplish a space link up when Shenzhou- 8 and Tiangong-1 rendezvoused and docked in earth orbit.

The graphics shows the procedure of the second docking between Shenzhou-8 spacecraft and Tiangong-1 space lab module on Nov. 14, 2011. Credit: Xinhua/Lu Zhe

Shenzhou-8 was launched to orbit on Nov. 1 atop a Long March 2F booster rocket from the Jiuquan Satellite Launch Center in the Gobi Desert in northwest China. The two Chinese built spacecraft have been joined together for 12 days.

China’s space re-docking exercise today came just hours after Russia successfully launched their Soyuz capsule with two Russians and one American bound for the ISS.

Views of Shenzhou-8 spacecraft docking with the space lab module Tiangong-1 for the second time on Nov. 14, 2011. Credit: CCTV/Beijing Aerospace Control Center

Today’s goal was to give Chinese engineers more practice and confidence in mastering the complex maneuvers required for rendezvous and docking two vehicles in space. It was carried out in daylight conditions as opposed to the nighttime conditions for the initial docking to expand the testing envelope under different scenarios.

Shenzhou-8 first disengaged from the prototype space station at about 6:37 a.m. EST and then withdrew to a distance of about 140 meters (460 ft). About 30 minutes later, mission controllers at the Beijing Aerospace Control Center monitored Shenzhou-8 as it automatically approached Tiangong-1 and completed the second docking – or “Space Kiss” as the Chinese media fondly say – at about 6:53 a.m. EST.

Photo taken on Nov. 14, 2011 show the live video of the outside view of Shenzhou-8 on a giant screen in the Beijing Aerospace Flight Control Center, in Beijing, capital of China, Nov. 14, 2011. China's Shenzhou-8 unmanned spacecraft successfully re-docked with the Tiangong-1, a module of the country's planned space lab on Monday. Credit: Xinhua/Wang Jianmin

The combined Shenzhou-8/Tiangong-1 orbiting complex is some 20 meter in length and weighs about 16 tons. Each vehicle weighs some 8 tons. Tiangong-1 is 10.4 m in length and 3.3. m in diameter. Shenzhou-8 is 9.2 m in length

Shenzhou is China’s manned space capsule but flew this flight with no humans aboard because Chinese space officials felt it was safer and prudent and did not want to expose astronauts to excessive risk during the unprecedented docking attempts.

Following today’s complete success, the China Manned Space Engineering (CMSE) Project is pushing ahead with plans to launch up to two manned missions to Tiangong-1 in 2012 – namely Shenzhou-9 and Shenzhou-10 which are already under construction.

Both 2012 missions would be short duration flights of a few days or weeks since the Tiangong-1 module is a prototype space station module and not outfitted for long duration flights.

CMSE is evaluating a pool of Chinese astronauts already in training – including two women – for the two flights. Both women candidates are married and about 30 years of age but have not been publically identified.

It seems highly likely that one of the Shenzhou missions will include the first female Chinese astronaut.

So far China has launched six astronauts on three manned Shenzhou capsules between 2003 and 2008.

The docking mechanism on Shenzhou-8 was developed and manufactured in China, says Wu Ping, spokeswoman for the CMSE.

In two days, Shenzhou-8 is due to undock from Tiangong-1 for the final time and initiate the fiery re-entry to Earth on Nov. 17. The descent capsule will land by parachute.

These historic feats prove that China’s manufacturing and technological capabilities are surging forward and rapidly matching the Western powers and Japan in a broad swath of scientific and technical fields.

Since the forced retirement of NASA’s functioning space shuttle orbiters, only China and Russia can launch people into space.


Video animation caption: Chinese spacecraft to ‘kiss’ in space. Credit: NMANewsDirect

Read Ken’s features about Shenzhou-8 & Tiangong-1
China Technology Surges Forward with Spectacular First Docking in Space
China launches Shenzhou-8 bound for Historic 1st Docking in Space
Shenzhou-8 rolled out for Blastoff to China’s 1st Space Station on November 1
Bizarre Video: China’s Tiangong 1 Space Lab Animation set to ‘America the Beautiful’ Soundtrack
China Blasts First Space Lab Tiangong 1 to Orbit
China set to ‘Leap Forward in Space’ as Tiangong 1 Rolls to Launch Pad

Russian Mars Moon Sample Probe Poised to Soar atop Upgraded Rocket – Video

Russia’s historic Phobos-Grunt sample return mission to Mars and Phobos poised on top of Zenit-2SB rocket at Baikonur Cosmodrome, Kazakhstan. Liftoff is slated for November 9, 2011 at 00:26 a.m. Moscow time [Nov. 8, 3:36 p.m. EST] from Launch Pad 45. Credit: Roscosmos. See Zenit Rocket rollout Video and Images below

[/caption]

After an absence of almost two decades, Russia is at last on the cusp of resuming an ambitious agenda of interplanetary science missions on Tuesday Nov. 8 3:16 p.m. EST (Nov. 9, 00:16 a.m. Moscow Time) by taking aim at Mars and scooping up the first ever soil and rocks gathered from the mysterious moon Phobos. Russia’s space program was hampered for many years by funding woes after the breakup of the former Soviet Union and doubts stemming from earlier mission failures. The Russian science ramp up comes just as US space leadership fades significantly due to dire NASA budget cutbacks directed by Washington politicians.

Russia’s daring and highly risky Phobos-Grunt soil sampling robot to the battered Martian moon Phobos now sits poised at the launch pad at the Baikonur Cosmodrome in Kazahkstan atop a specially upgraded booster dubbed the “Zenit-2SB” rocket according to Alexey Kuznetsov, Head of the Roscosmos Press Office in an exclusive interveiw with Universe Today. Roscosmos is the Russian Federal Space Agency. Watch the awesome Mars mission animation in my article here. See Zenit Rocket rollout video and images below.

“The Phobos-Grunt automatic interplanetary station will launch on November 9, 2011 at 00:26 a.m. Moscow time [Nov. 8, 3:36 p.m. EST],” Kuznetsov confirmed to Universe Today.

The Roscosmos video and photos here show the Zenit rocket rollout starting from Building 45 where the final prelaunch processing was conducted late last week mounting the nose cone holding the Phobos-Grunt and companion Yinghuo-1 spacecraft to the upgraded Fregat upper stage.

Russia’s Phobos-Grunt automatic interplanetary station - lander. Credit: Roscosmos

If successful, Phobos Grunt will complete the Earth to Mars round trip voyage in some 34 months and the history making soil samples will plummet through the Earth’s atmosphere in August 2014 to waiting Russian military helicopters.

Following an 11 month interplanetary journey, the spaceship will enter Mars orbit and spend several months searching for a suitable landing site on Phobos. The probe is due to touchdown very gently on Phobos surface in Feb. 2013 using radar and precision thrusters accounting for the moon’s extremely weak gravity. After gathering samples with two robotic arms, the soil transferred to the Earth return capsule will take off in the ascent vehicle for the trip back home.

“The Zenit can launch spacecraft from Baikonur into LEO, MEO, HEO and elliptical near-Earth orbits (including GTO and geostationary orbit) and to escape trajectories as well,” Kuznetsov explained.

Zenit-2SB rocket rollout from Building 45 at Baikonur with Russia’s Phobos-Grunt automatic interplanetary station. Credit: Roscosmos

The Zenit-2SB booster with Phobos-Grunt and the piggybacked Yinghuo-1 Mars orbiter from China were rolled out horizontally by train on a railed transporter on Nov. 6, raised and erected vertically into launch position at Launch Pad 45 at Baikonur.

“The ‘Zenit-2SB’ rocket belongs to the rocket family using nontoxic fuel components – liquid oxygen and kerosene,” Kuznetsov elaborated. “The Zenit was manufactured by the A.M. Makarov Yuzhny Machine-Building Plant in Ukraine.”

“This “Zenit-2” rocket modification has significant improvements,” Kuznetsov told me. “The improvements include a new navigation system, a new generation on-board computer, and better performance by mass reduction and increase in thrust of the second stage engine.”

Zenit-2SB rocket rollout on train car to Baikonur launch pad with Phobos-Grunt sampling return mission to Mars and Phobos. Credit: Roscosmos

Likewise the upper stage was upgraded for the historic science flight.

“The Zenit’s Fregat upper stage has also been modified. The “Phobos Grunt” automatic interplanetary station cruise propulsion system was built onto the base of the “Fregat-SB” upper stage. Its main task is to insert the automatic interplanetary station onto the Mars flight path and accomplish the escape trajectory.”

“The “Phobos Grunt” automatic interplanetary station mission was constructed by the Russian Academy of Sciences Space Research Institute in Moscow and the spacecraft was manufactured by NPO Lavochkin in Moscow,” Kuznetsov told me.

The 12,000 kg Phobos-Grunt automatic interplanetary station is equipped with a powerful 50 kg payload of some 20 science instruments provided by a wide ranging team of international scientists and science institutions from Europe and Asia.

The audacious goal is to bring back up to 200 grams of pristine regolith and rocks that help unlock the mysteries of the origin and evolution of Phobos, Mars and the Solar System

Zenit-2SB rocket rollout on train to launch pad at Baikonur with Russia’s Phobos-Grunt automatic interplanetary station. Credit: Roscosmos

Zenit-2SB rocket erected vertically to launch position at Baikonur launch pad with Russia’s Phobos-Grunt Mars spacecraft. Credit: Roscosmos

Russia’s Phobos-Grunt sample return mission to Mars and Phobos poised atop Zenit rocket at Pad 45 at Baikonur Cosmodrome. Kazakhstan. Liftoff set for November 9, 2011 at 00:26 a.m. Moscow time - Nov. 8, 3:36 p.m. EST. Credit: Roscosmos.

NASA’s Curiosity Mars Science Laboratory (MSL) Rover has also arrived at her Florida launch pad awaiting Nov. 25 liftoff.

Join me in wishing all the best to Roscosmos and NASA for this duo of fabulous Mars missions in 2011 that will help unravel our place in the Universe – like never before!

Read Ken’s continuing features about Phobos-Grunt upcoming Nov 9 launch here:
Awesome Action Animation Depicts Russia’s Bold Robot Retriever to Mars moon Phobos
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff

China Technology Surges Forward with Spectacular First Docking in Space

Photos of Shenzhou-8 and Tiangong-1 docking in Earth orbit. Credit: CMSE

Video Caption: Live Video of Shenzhou-8 and Tiangong-1 docking in Earth orbit. Photos below. Credit: CCTV commentary/CMSE

China’s technological capabilities took a major surge forward with the successful docking in space today for the first time ever of two Chinese built and launched spaceships – orbiting some 343 kilometers in the heavens above at 1:37 a.m. Beijing time Nov. 3(1:37 p.m. EDT, Nov. 2). China’s goal is to build a fully operational space station in Earth orbit by 2020 – about the time when the ISS may be retired.

Today’s space spectacular joining together the Shenzhou-8 unmanned spacecraft and the Tiangong-1 prototype space station was an historic feat for China, which now becomes only the 3rd country to accomplish a rendezvous and docking of spacecraft in Earth orbit.

Shenzhou is China’s manned spaceflight capsule but is flying without a crew for this particular test flight. The prowess demonstrated with this triumph paves the way for further manned Shenzhou’s launches soon.
[/caption]

The remarkable space milestone follows in the footsteps of what the United States and Russia accomplished decades ago but this was carried out with 21st century science, technology and manufacturing abilities developed by China during the nation’s rapid rise over the past few decades to become the world’s 2nd most powerful economy.

Schematic of Shenzhou-8 and Tiangong-1 docking in Earth orbit. Credit: CMSE

Shenzhou 8 has been chasing Tiangong-1 in orbit for two days since it was launched on Nov. 1 atop a Long March 2F booster rocket from the Gobi desert in northwest China.

The Commander-in-chief of China´s manned space program Gen. Chang Wanquan, announced “China’s first rendezvous and docking in space joining together the spacecraft Shenzhou-8 and Tiangong-1 space lab module was a complete success.” Chang leads the China Manned Space Engineering (CMSE) Project and pronounced the achievement at the Beijing Aerospace Control Center.

Chinese President Hu Jintao sent a congratulatory message from the G-20 summit in Cannes, France. “I am very pleased to hear the news and I send congratulations to all who made this possible. This will push China’s manned space program forward.”

Graphic shows the procedure of Shenzhou-8 spacecraft docking with Tiangong-1 space lab module on Nov. 3, 2011. (Xinhua/Lu Zhe)

The landmark rendezvous and docking was carried live by state run CCTV for all the world to watch. The impressive 2 hour long TV broadcast showed simultaneous and breathtaking camera videos from both the unpiloted Shenzhou-8 capsule and the Tiangong-1 space station module as they viewed one another in the cameras field of view and slowly approached together with the lovely Earth as a backdrop.

Mission controllers carefully monitored all spacecraft systems on both Shenzhou-8 and Tiangong-1 as they sped closer at about 20 cm/sec and stopped at several parking points along the way (400 m, 140 m, 30 m) to confirm everything was nominal.

Chinese engineers and on board systems precisely guided the two spaceships and watched for any deviations. In case of any failures they had the capability to radio the vehicles to separate. But no deviations occurred and the autonomous docking proceeded to completion.

The two vehicles will remain docked for 12 days, then unhook and back off about 150 meters and then conduct another practice docking. The second practice docking is being done to gain more expertise and confidence and will be carried out under different conditions and in daylight.

The combined Shenzhou-8/Tiangong-1 orbiting complex weighs about 16 tons, some 8 tons each. Tiangong-1 is 10.4 m in length and 3.3. m in diameter. Shenzhou 8 is 9.2 m in length.

China plans two crewed flights to Tiangong-1 starting in 2012. The multi-person crews aboard Shenzhou 9 & Shenzhou 10 are almost certain to include China’s first female astronaut. The astronauts would float into Tiangong 1 from their Shenzhou capsules and remain on board for a few days or weeks. They will check out the spacecraft systems and conduct medical, space science and technology tests and experiments.

Meanwhile, since the premature retirement of the space shuttle with no successor in place, the US has absolutely no capability to launch astronauts to earth orbit. Therefore the ISS is totally reliant on Russian Soyuz rockets and capsules. US astronauts must hitch a ride to space with the Russians.

The US Senate just passed a NASA budget for 2012 that cuts NASA funding and will delay a replacement manned vehicle even further, likely into 2017. The US House seeks even deeper NASA budget cuts.

Thus China surges powerfully forward in space and science while the US political establishment has directed NASA to delay and retrench and layoff still more workers.

China's unmanned spacecraft Shenzhou-8 blasted off at 5:58 a.m. Beijing Time Nov 1 from the Jiuquan Satellite Launch Center in northwestern desert area. Credit: CMSE

Read Ken’s related features about China’s Shenzhou-8, Tiangong-1 and Yinghou-1
China launches Shenzhou-8 bound for Historic 1st Docking in Space
Shenzhou-8 rolled out for Blastoff to China’s 1st Space Station on November 1
Bizarre Video: China’s Tiangong 1 Space Lab Animation set to ‘America the Beautiful’ Soundtrack
China Blasts First Space Lab Tiangong 1 to Orbit
China set to ‘Leap Forward in Space’ as Tiangong 1 Rolls to Launch Pad
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline

China launches Shenzhou-8 bound for Historic 1st Docking in Space

China's unmanned spacecraft Shenzhou-8 blasted off at 5:58 a.m. Beijing Time Nov 1 from the Jiuquan Satellite Launch Center in northwestern desert area. Credit: CMSE

[/caption]

China today launched the Shenzhou-8 capsule on a historic mission to accomplish the nation’s first ever docking in space with another vehicle, already in orbit, and pave the way toward’s China’s true ambition – constructing a multi-module space station by 2020.

The unpiloted Shenzhou-8 streaked skywards today in a blinding flash atop a powerful and upgraded Long March 2F/Y8 carrier rocket in the early morning darkness and precisely on time at 5:58 a.m. Beijing time (5:58 p.m. EDT) from the Jiuquan Satellite Launch Center in the Gobi Desert in northwest China. Viewers could watch a live CCTV broadcast from state media broadcast in English.

The Long March first stage is augmented with four liquid fueled strap on boosters. Spectacular TV views show the boosters and payload fairings being jettisoned.

The goal of the mission is for China to master critical and complex rendezvous and docking technologies and link up with China’s 1st orbiting prototype space station module dubbed Tiangong-1, or Heavenly Palace-1.

A modified model of the Long March CZ-2F rocket carrying the unmanned spacecraft. Shenzhou-8 blasts off from the launch pad at the Jiuquan Satellite Launch Center in northwest China's Gansu Province, Nov. 1, 2011. Credit: Xinhua/Li Gang

The historic docking of Shenzhou-8 with Tiangong-1 will be a highly significant achievement and is set to take place after the capsule catches up with the module in two days time. Tiangong-1 has been orbiting Earth since it was launched a month ago from the same launch site.

“The Launch of Shenzhou 8 has been a great success !”, announced Gen. Chang Wanquan, the Commander in Chief of China’s manned space program known as the China Manned Space Engineering (CMSE) Project. Chang, dressed in his military uniform, is Commanding Officer of Tiangong 1/Shenzhou 8 Rendezvous and Docking Mission Headquarters, and director of the PLA (Peoples Liberation Army) General Armaments Department.

Shenzhou-8 blasted off on Nov.1 from Jiuquan Satellite Launch Center. Credit: CMSE

“The Shenzhou 8 spaceship has entered at 6:07:53 its operating orbit with a perigee height of 200 km and apogee height of 329 km.”

The unmanned Shenzhou capsule entered orbit 585 seconds after liftoff while flying over the Pacific Ocean and placed the spacecraft into an initial elliptical orbit.

Shenzhou-8 will conduct five orbital maneuvers by firing its on board thrusters to match orbits and close in Tiangong-1 over the next two days and is on course for the linkup. Each vehicle weighs about 8 tons.

The two vehicles will remain docked for 12 days. Shenzhou-8 will then undock and separate and attempt another practice docking.

After several more days of joint operations the Shenzhou-8 capsule will depart and reenter the earth as though it had a crew.

Shenzhou-8 is fully equipped to carry an astronaut crew and even food and water are stored on board.

Today’s success sets the stage for two Chinese manned missions to follow in 2012, namely Shenzhou 9 and Shenzhou 10. They will each carry two or three astronauts.

Schematic of Shenzhou-8 (left) and Tiangong-1 space station module (right) accomplishing historic first Chinese docking in Earth orbit. Credit: CMSE

The Tiangong-1 target module was launched from Jiuquan on September 29 and is functioning perfectly. Its orbit was already lowered and the ship was rotated 180 degrees in anticipation of today’s liftoff.

The Long March 2F booster is the tallest, heaviest and most powerful in China’s rocket arsenal.

China’s state run CCTV carried the launch live and provided excellent and informative commentary that harkened back to the glory days of NASA’s Apollo moon landing project. The Chinese government and people take great pride in the accomplishments of their space program which is vaulting China to the forefront of mastering technologically difficult achievements.

Long range tracking cameras and on board cameras captured exquisite views of Shenzhou-8 maneuver all the way to orbit, including separation of the first stage booster, jettison of the payload fairing, firing of the 2nd stage engines, deployment of the twin solar arrays, live shots inside the capsule and beautiful views of mother Earth some 200 kilometers below.

Read Ken’s related features about China’s Shenzhou-8, Tiangong-1 and Yinghou-1
Shenzhou-8 rolled out for Blastoff to China’s 1st Space Station on November 1
Bizarre Video: China’s Tiangong 1 Space Lab Animation set to ‘America the Beautiful’ Soundtrack
China Blasts First Space Lab Tiangong 1 to Orbit
China set to ‘Leap Forward in Space’ as Tiangong 1 Rolls to Launch Pad
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline