China Plans Lunar Far Side Landing by 2020

This time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at two different positions during its trek over the Moon’s surface at its landing site from Dec. 15-18, 2013. This view was taken from the 360-degree panorama. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo. See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm

China plans lunar far side landing with hardware similar to Chang’e-3 lander
This time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at two different positions during its trek over the Moon’s surface at its landing site from Dec. 15-18, 2013. This view was taken from the 360-degree panorama. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo.
See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014: [/caption]

China aims to land a science probe and research rover on the far side of the Moon by 2020, say Chinese officials.

Chinese scientists plan to carry out the highly complex lunar landing mission using a near identical back up to the nations highly successful Chang’e-3 rover and lander – which touched down in December 2013.

If successful, China would become the first country to accomplish the history making task of a Lunar far side landing.

“The mission will be carried out by Chang’e-4, a backup probe for Chang’e-3, and is slated to be launched before 2020,” said Zou Yongliao from the moon exploration department under the Chinese Academy of Sciences, according to a recent report in China’s government owned Xinhua news agency.

Zou made the remarks at a deep-space exploration forum in China.

“China will be the first to complete the task if it is successful,” said Zou.

Chinese space scientists have been evaluating how best to utilize the Chang’e-4 hardware, built as a backup to Chang’e-3, ever since China’s successful inaugural soft landing on the Moon was accomplished by Chang’e-3 in December 2013 with the mothership lander and piggybacked Yutu lunar rover.

Chang’e-3/Yutu Timelapse Color Panorama  This newly expanded timelapse composite view shows China’s Yutu moon rover at two positions passing by crater and heading south and away from the Chang’e-3 lunar landing site forever about a week after the Dec. 14, 2013 touchdown at Mare Imbrium. This cropped view was taken from the 360-degree timelapse panorama. See complete 360 degree landing site timelapse panorama herein and APOD Feb. 3, 2014. Chang’e-3 landers extreme ultraviolet (EUV) camera is at right, antenna at left. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com.   See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014:  http://apod.nasa.gov/apod/ap140203.htm
Chang’e-3/Yutu Timelapse Color Panorama This newly expanded timelapse composite view shows China’s Yutu moon rover at two positions passing by crater and heading south and away from the Chang’e-3 lunar landing site forever about a week after the Dec. 14, 2013 touchdown at Mare Imbrium. This cropped view was taken from the 360-degree timelapse panorama. See complete 360 degree landing site timelapse panorama herein and APOD Feb. 3, 2014. Chang’e-3 landers extreme ultraviolet (EUV) camera is at right, antenna at left. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com. See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.html

Plans to launch Chang’e-4 in 2016 were eventually abandoned in favor of further evaluation.

After completing an intense 12 month study ordered by China’s government, space officials confirmed that the lunar far side landing was the wisest use of the existing space hardware.

Chang’e-4 will be modified with a larger payload.

“Chang’e-4 is very similar to Chang’e-3 in structure but can handle more payload,” said Zou.

“It will be used to study the geological conditions of the dark side of the moon.”

The moon is tidally locked with the Earth so that only one side is ever visible. But that unique characteristic makes it highly attractive to scientists who have wanted to set up telescopes and other research experiments on the lunar far side for decades.

“The far side of the moon has a clean electromagnetic environment, which provides an ideal field for low frequency radio study. If we can can place a frequency spectrograph on the far side, we can fill a void,” Zou elaborated.

China will also have to launch another lunar orbiter in the next few years to enable the Chang’e-4 lander and rover to transmit signals and science data back to Chinese mission control on Earth.

In the meantime, China already announced its desire to forge ahead with an ambitious mission to return samples from the lunar surface later this decade.

The Chinese National Space Agency (CNSA) plans to launch the Chang’e-5 lunar sample return mission in 2017 as the third step in the nations far reaching lunar exploration program.

“Chang’e-5 will achieve several breakthroughs, including automatic sampling, ascending from the moon without a launch site and an unmanned docking 400,000 kilometers above the lunar surface,” said Li Chunlai, one of the main designers of the lunar probe ground application system, accoding to Xinhua.

The first step involved a pair of highly successful lunar orbiters named Chang’e-1 and Chang’e-2 which launched in 2007 and 2010.

The second step involved the hugely successful Chang’e-3 mothership lander and piggybacked Yutu moon rover which safely touched down on the Moon at Mare Imbrium (Sea of Rains) on Dec. 14, 2013 – marking China’s first successful spacecraft landing on an extraterrestrial body in history, and chronicled extensively in my reporting here at Universe Today.

360-degree time-lapse color panorama from China’s Chang’e-3 lander. This new 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at five different positions, including passing by crater and heading south and away from the Chang’e-3 lunar landing site forever during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com.  See our Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm
360-degree time-lapse color panorama from China’s Chang’e-3 lander. This new 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at five different positions, including passing by crater and heading south and away from the Chang’e-3 lunar landing site forever during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com. See our Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.html

See above and herein our time-lapse photo mosaics showing China’s Yutu rover dramatically trundling across the Moon’s stark gray terrain in the first weeks after she rolled all six wheels onto the desolate lunar plains.

The complete time-lapse mosaic shows Yutu at three different positions trekking around the landing site, and gives a real sense of how it maneuvered around on its 1st Lunar Day.

The 360 degree panoramic mosaic was created by the imaging team of scientists Ken Kremer and Marco Di Lorenzo from images captured by the color camera aboard the Chang’e-3 lander and was featured at Astronomy Picture of the Day (APOD) on Feb. 3, 2014.

Chang’e-3 and Yutu landed on a thick deposit of volcanic material.

Mosaic of the Chang'e-3 moon lander and the lunar surface taken by the camera on China’s Yutu moon rover from a position south of the lander during Lunar Day 3.   Note the landing ramp and rover tracks at left.  Credit: CNSA/SASTIND/Xinhua/Marco Di Lorenzo/Ken Kremer
Mosaic of the Chang’e-3 moon lander and the lunar surface taken by the camera on China’s Yutu moon rover from a position south of the lander during Lunar Day 3. Note the landing ramp and rover tracks at left. Credit: CNSA/SASTIND/Xinhua/Marco Di Lorenzo/Ken Kremer

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Chinese rover & lander beam back Portraits with China’s Flag shining on Moon’s Surface

Yutu rover emblazoned with Chinese Flag as seen by the Chang'e 3 lander on the moon on Dec. 15, 2013. Credit: China Space

Yutu rover emblazoned with Chinese Flag as seen by the Chang’e-3 lander on the moon on Dec. 15, 2013. Notice the rover tire tracks left behind in the loose lunar topsoil. Credit: China Space
Story updated[/caption]

China’s ambitious lunar space exploration program achieved another stunning success Sunday night, Dec 15, when the countries inaugural Chang’e-3 lunar lander and rover beamed back portraits of one another snapped from the Moon’s surface – that also proudly displayed the brilliant red Chinese national flag shining atop an extraterrestrial body for the very first time in human history.

“I announce the complete success of the Chang’e-3 mission,” said Ma Xingrui, chief commander of China’s lunar program, during a live CCTV broadcast as the portraits were shown to a worldwide audience from huge screens mounted at the mission control at the Beijing Aerospace Control Center (BACC) in Beijing.

Chinese President Xi Jinping was on hand to personally witness the momentous events in real time.

A wave of cheers and high fives rocked around mission control as the startling imagery of the ‘Yutu’ rover and Chang’e-3 lander nestled atop the Moon’s soil in the Bay of Rainbows was received around 11:42 p.m. Sunday, local Beijing time, 10:42 a.m. EST, via China’s own deep space tracking network.

Xi Jinping’s presence was a clear demonstration of China’s confidence in its lunar team and the importance of this space spectacular to China’s prestige and technological prowess.

China thus became only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

China’s ‘Yutu’ rover had just rolled majestically onto the Moon’s soil hours earlier on Sunday, Dec. 15, at 4:35 a.m. Beijing local time – barely seven hours after the Chang’e-3 mothership touched down atop the lava filled plains of the Bay of Rainbows on Dec. 14.

The rover’s wheels left behind noticeable tire tracks as it drove across the loose lunar topsoil.

Read my earlier detailed accounts of the Dec. 15 drive by Yutu onto the lunar surface illustrated with an extensive photo gallery – here; and of the stunning Dec. 14 landing – here.

CCTV showed China’s President gleefully shaking hands and extending congratulations with many members of the mission team at BACC after seeing the high resolution photos of the Chang’e-3 rover emblazoned with China’s flag for himself.

Chang'e 3 lander as seen by the rover Yutu on the moon on Dec. 15, 2013.  Credit: China Space
Chang’e 3 lander as seen by the rover Yutu on the moon on Dec. 15, 2013. Credit: China Space

It’s been nearly four decades since the prior lunar landing was accomplished by the Soviet Union’s Luna 24 sample return spacecraft back in 1976.

America’s last visit to the Moon’s surface occurred with the manned Apollo 17 landing mission – crewed by astronauts Gene Cernan and Harrison ‘Jack’ Schmitt , who coincidentally ascended from the lunar soil on Dec. 14, 1972 – exactly 41 years ago.

“The Central Committee of the Communist Party and the Central Military Commission [responsible for China’s space program] sends congratulations to all the staff that participated in the successful completion of the mission and China’s first soft landing on the moon,” said the Chinese vice premier Ma Kai during the CCTV broadcast.

“The rover and lander are working properly and reaching the goals set.”

“Chang’e-3 is China’s most complicated space mission,” said Kai. “This shows China is dedicated to the peaceful uses of space.”

“There are many more complicated and difficult tasks ahead.”

Chang'e-3 lander imaged by the rover Yutu on the moon on Dec. 15, 2013.  Note landing ramp at bottom. Credit: CCTV
Chang’e-3 lander imaged by the rover Yutu on the moon on Dec. 15, 2013. Note landing ramp at bottom. Credit: CCTV

Indeed so far the Chang’e-3 mission has been primarily a highly successful demonstration of the extremely challenging engineering required to accomplish China’s first lunar landing.

Now the science phase can truly begin.

Over 4600 images have already been transmitted by Chang’e-3 since the Dec. 14 touchdown.

After rolling all six wheels into the dirt, Yutu – which translates as Jade Rabbit – drove to a location about nine meters north of the lander, according to CCTV commentators.

The rover then turned around so that the red Chinese flag emblazoned on the front side would be facing the lander’s high resolution color cameras for the eagerly awaited portraits of one another.

Yutu is nearly the size of a golf cart. It measures about 1.5 m x 1 m on its sides and stands about 1.5 m (nearly 5 feet) tall – nearly human height.

The 120 kg Yutu rover will now begin driving in a circle around the right side of the 1200 kg Chang’e-3 lander – for better illumination – at a distance ranging from 10 to 18 meters.

The rover will snap further photos of the lander as it traverses about from 5 specific locations – showing the front, side and back – over the course of the next 24 hours.

See the accompanying graphic – written in Chinese.

Yutu and the Chang'e 3 lander are scheduled to take photos of each other soon from locations outlined in this artists concept.  Credit: China Space
Yutu and the Chang’e 3 lander are scheduled to take photos of each other soon from locations outlined in this artists concept. Credit: China Space

Thereafter Yutu will depart the landing site forever and begin its own lunar trek that’s expected to last at least 3 months.

So the rover and lander will soon be operating independently.

They are equipped with eight science instruments including multiple cameras, spectrometers, an optical telescope, ground penetrating radar and other sensors to investigate the lunar surface and composition.

The radar instrument installed at the bottom of the rover can penetrate 100 meters deep below the surface to study the Moon’s structure and composition in unprecedented detail, according to Ouyang Ziyuan, senior advisor of China’s lunar probe project, in an interview on CCTV.

A UV camera will study the earth and its interaction with solar wind and a telescope will study celestial objects. This is done during the lunar day.

It will also investigate the moon’s natural resources for use by potential future Chinese astronauts.

China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: CCTV
China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: CCTV

The two probes are now almost fully operational. Most of the science instruments are working including at least three cameras and the ground penetrating radar.

And although they have survived the harsh lunar environment thus far, they still face massive challenges. They must prove that they can survive the extremely cold lunar night and temperature fluctuations of more than 300 degrees Celsius – a great engineering challenge.

The rover will hibernate during the two week long lunar night.

A radioisotopic heater will provide heat to safeguard the rovers computer and electronics – including the alpha particle X-ray instrument on the rover’s robotic arm.

The Bay of Rainbows, or Sinus Iridum region, is located in the upper left portion of the moon as seen from Earth. You can see the landing site with your own eyes.

Chang’e 3 targeted lunar landing site in the Bay of Rainbows or Sinus Iridum
Chang’e 3 targeted lunar landing site in the Bay of Rainbows or Sinus Iridum

It was imaged in high resolution by China’s prior lunar mission – the Chang’e-2 lunar orbiter and is shown in graphics herein.

China’s Chang’e-3 probe joins NASA’s newly arrived LADEE lunar probe which entered lunar orbit on Oct. 6 following a spectacular night time blastoff from NASA’s Wallops Flight Facility in Virginia.

Stay tuned here for Ken’s continuing Chang’e-3, LADEE, MAVEN, MOM, Mars rover and more news.

Ken Kremer

China's first lunar rover separates from Chang'e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer
China’s first lunar rover separates from Chang’e-3 moon lander early Dec. 15, 2013. Screenshot taken from the screen of the Beijing Aerospace Control Center in Beijing. Credit: Xinhua/post processing by Marco Di Lorenzo/Ken Kremer