The European Space Agency’s (ESA) Rosetta mission spent two years at the comet 67P/Churyumov-Gerasimenko. At the end of September 2016, its mission was ended when the spacecraft was sent on a collision course into the comet. During its time at comet 67P, it captured a vast amount of images.
The ESA made all those images freely available at their Rosetta website, and now an astro-photographer working with those images has found something interesting: a chunk of ice travelling through space with 67P.
Hang onto your space helmets. With a few moves of the mouse, you can now follow the European Rosetta mission to its target comet with this interactive 3-D simulator. Go ahead and give it a click – it’s live! The new simulator was created by INOVE Space Models, the same group that gave us the 3-D solar system and Comet ISON interactive models.
The embedded version gives you a taste, so be sure to also check out the full-screen version. You can either click play to watch the mission from start to finish or you can drop it at key points by selecting from list of 11 highlights on the left side of your screen. A tick-tock at the bottom of the screen helps reference the time and what the spacecraft is doing at that moment in the video.
To interact with the model, simply click the screen. The action stops, allowing you to zoom in and out by scrolling; to change orbital viewpoints hold down the mouse button and drag. So easy!
I like the realism of the simulation, the attention paid to the planets’ variable spin rates and orbital periods and how well model illustrates the complicated maneuvers required to “fling” the probe to Comet Churyumov-Gerasimenko. And I do mean fling. Watching the video from a face-on solar system perspective I was struck by how Rosetta’s flight path resembled a spiral after repeated gravity assists by Mars and Earth.
Whether you’re a teacher or an armchair space enthusiast looking for an easy-to-understand, graphic way to find out how Rosetta will meet its target, I doubt you’ll find a more effective tool.