New Telescopes to Study the Aftermath of the Big Bang

A photograph of a CMB-S4 detector wafer being prepared for testing in a cryostat at Lawrence Berkeley National Laboratory. Credit: Thor Swift/Lawrence Berkeley National Laboratory

Astronomers are currently pushing the frontiers of astronomy. At this very moment, observatories like the James Webb Space Telescope (JWST) are visualizing the earliest stars and galaxies in the Universe, which formed during a period known as the “Cosmic Dark Ages.” This period was previously inaccessible to telescopes because the Universe was permeated by clouds of neutral hydrogen. As a result, the only light is visible today as relic radiation from the Big Bang – the Cosmic Microwave Background (CMB) – or as the 21 cm spectral line created by the reionization of hydrogen (aka. the Hydrogen Line).

Now that the veil of the Dark Ages is being slowly pulled away, scientists are contemplating the next frontier in astronomy and cosmology by observing “primordial gravitational waves” created by the Big Bang. In recent news, it was announced that the National Science Foundation (NSF) had awarded $3.7 million to the University of Chicago, the first part of a grant that could reach up to $21.4 million. The purpose of this grant is to fund the development of next-generation telescopes that will map the CMB and the gravitational waves created in the immediate aftermath of the Big Bang.

L

Colliding Neutron Stars Could Help Measure the Expansion of the Universe

Artist's impression of two neutron stars colliding, known as a "kilonova" event. Credits: Elizabeth Wheatley (STScI)

According to some in the astrophysical community, there has been something of a “Crisis in Cosmology” in recent years. Though astronomers are all aware that the Universe is in a state of expansion, there has been some inconsistency when measuring the rate of it (aka. the Hubble Constant). This issue arises from the Cosmic Distance Ladder, where astronomers use different methods to measure relative distances over longer scales. This includes making local distance estimates using parallax measurements, nearby variable stars, and supernovae (“standard candles”).

They also conduct redshift measurements of the Cosmic Microwave Background (CMB), the relic radiation left over from the Big Bang, to determine cosmological distances. The discrepancy between these two methods is known as the “Hubble Tension,” and astronomers are eager to resolve it. In a recent study, an international team of astrophysicists from the Niels Bohr Institute suggested a novel method for measuring cosmic expansion. They argue that by observing colliding neutron stars (kilonovae), astronomers can relieve the tension and obtain consistent measurements of the Hubble Constant.

Continue reading “Colliding Neutron Stars Could Help Measure the Expansion of the Universe”

Another New Way to Measure Distance in the Universe: Baryon Acoustic Oscillations

An artist's concept of the latest, highly accurate measurement of the Universe from BOSS. The spheres show the current size of the "baryon acoustic oscillations" (BAOs) from the early universe, which have helped to set the distribution of galaxies that we see in the universe today. Galaxies have a slight tendency to align along the edges of the spheres — the alignment has been greatly exaggerated in this illustration. BAOs can be used as a "standard ruler" (white line) to measure the distances to all the galaxies in the universe. Credit: Zosia Rostomian, Lawrence Berkeley National Laboratory

Measuring cosmic distances is a major challenge thanks to the fact that we live in a relativistic Universe. When astronomers observe distant objects, they are not just looking through space but also back in time. In addition, the cosmos has been expanding ever since it was born in the Big Bang, and that expansion is accelerating. Astronomers typically rely on one of two methods to measure cosmic distances (known as the Cosmic Distance Ladder). On the one hand, astronomers rely on redshift measurements of the Cosmic Microwave Background (CMB) to determine cosmological distances.

Conversely, they will rely on local observations using parallax measurements, variable stars, and supernovae. Unfortunately, there is a discrepancy between redshift measurements of the CMB and local measurements, leading to what is known as the Hubble Tension. To address this, a team of astronomers from several Chinese universities and the University of Cordoba conducted a two-year statistical analysis of one million galaxies. From this, they’ve developed a new technique that relies on Baryon Acoustic Oscillations (BAO) to determine distances with a greater degree of precision.

Continue reading “Another New Way to Measure Distance in the Universe: Baryon Acoustic Oscillations”

The First Light in the Universe Helps Build a Dark Matter Map

A view of Stephan’s Quintet, a visual grouping of five galaxies from the James Webb Telescope. Credit: NASA/ESA/CSA/STScI

In the 1960s, astronomers began noticing a pervasive microwave background visible in all directions. Thereafter known as the Cosmic Microwave Background (CMB), the existence of this relic radiation confirmed the Big Bang theory, which posits that all matter was condensed onto a single point of infinite density and extreme heat that began expanding ca. 13.8 years ago. By measuring the CMB for redshift and comparing these to local distance measurements (using variable stars and supernovae), astronomers have sought to measure the rate at which the Universe is expanding.

Around the same time, scientists observed that the rotational curves of galaxies were much higher than their visible mass suggested. This meant that either Einstein’s Theory of General Relativity was wrong or the Universe was filled with a mysterious, invisible mass. In a new series of papers, members of the Atacama Cosmology Telescope (ACT) collaboration have used background light from the CMB to create a new map of Dark Matter distribution that covers a quarter of the sky and extends deep into the cosmos. This map confirms General Relativity and its predictions for how mass alters the curvature of spacetime.

Continue reading “The First Light in the Universe Helps Build a Dark Matter Map”

Could a Dark Energy Phase Change Relieve the Hubble Tension?

This illustration shows three steps astronomers used to measure the universe's expansion rate (Hubble constant) to an unprecedented accuracy, reducing the total uncertainty to 2.3 percent. The measurements streamline and strengthen the construction of the cosmic distance ladder, which is used to measure accurate distances to galaxies near to and far from Earth. The latest Hubble study extends the number of Cepheid variable stars analyzed to distances of up to 10 times farther across our galaxy than previous Hubble results. Credits: NASA, ESA, A. Feild (STScI), and A. Riess (STScI/JHU)

According to the most widely-accepted cosmological theories, the Universe began roughly 13.8 billion years ago in a massive explosion known as the Big Bang. Ever since then, the Universe has been in a constant state of expansion, what astrophysicists know as the Hubble Constant. For decades, astronomers have attempted to measure the rate of expansion, which has traditionally been done in two ways. One consists of measuring expansion locally using variable stars and supernovae, while the other involves cosmological models and redshift measurements of the Cosmic Microwave Background (CMB).

Unfortunately, these two methods have produced different values over the past decade, giving rise to what is known as the Hubble Tension. To resolve this discrepancy, astronomers believe that some additional force (like “Early Dark Energy“) may have been present during the early Universe that we haven’t accounted for yet. According to a team of particle physicists, the Hubble Tension could be resolved by a “New Early Dark Energy” (NEDE) in the early Universe. This energy, they argue, would have experienced a phase transition as the Universe began to expand, then disappeared.

Continue reading “Could a Dark Energy Phase Change Relieve the Hubble Tension?”

“Early Dark Energy” Could Explain the Crisis in Cosmology

A diagram of the evolution of the observable universe. The Dark Ages are the object of study in this new research, and were preceded by the CMB, or Afterglow Light Pattern. By NASA/WMAP Science Team - Original version: NASA; modified by Cherkash, Public Domain, https://commons.wikimedia.org/w/index.php?curid=11885244
A diagram of the evolution of the observable universe. Credit: NASA/WMAP/Wikimedia

In 1916, Einstein finished his Theory of General Relativity, which describes how gravitational forces alter the curvature of spacetime. Among other things, this theory predicted that the Universe is expanding, which was confirmed by the observations of Edwin Hubble in 1929. Since then, astronomers have looked farther into space (and hence, back in time) to measure how fast the Universe is expanding – aka. the Hubble Constant. These measurements have become increasingly accurate thanks to the discovery of the Cosmic Microwave Background (CMB) and observatories like the Hubble Space Telescope.

Astronomers have traditionally done this in two ways: directly measuring it locally (using variable stars and supernovae) and indirectly based on redshift measurements of the CMB and cosmological models. Unfortunately, these two methods have produced different values over the past decade. As a result, astronomers have been looking for a possible solution to this problem, known as the “Hubble Tension.” According to a new paper by a team of astrophysicists, the existence of “Early Dark Energy” may be the solution cosmologists have been looking for.

Continue reading ““Early Dark Energy” Could Explain the Crisis in Cosmology”

Finally, an Explanation for the Cold Spot in the Cosmic Microwave Background

Map of the cosmic microwave background (CMB) sky produced by the Planck satellite. The Cold Spot is shown in the inset, with coordinates and the temperature difference in the scale at the bottom. Credit: ESA/Durham University.

According to our current Cosmological models, the Universe began with a Big Bang roughly 13.8 billion years ago. During the earliest periods, the Universe was permeated by an opaque cloud of hot plasma, preventing atoms from forming. About 380,000 years later, the Universe began to cool and much of the energy generated by the Big Bang converted into light. This afterglow is now visible to astronomers as the Cosmic Microwave Background (CMB), first observed during the 1960s.

One peculiar characteristic about the CMB that attracted a lot of attention was the tiny fluctuations in temperature, which could provide information about the early Universe. In particular, there is a rather large spot in the CMB that is cooler than the surrounding afterglow, known as the CMB Cold Spot. After decades of studying the CMB’s temperature fluctuations, a team of scientists recently confirmed the existence of the largest cold spots in the CMB afterglow – the Eridanus Supervoid – might be the explanation for the CMB Cold Spot that astronomers have been looking for!

Continue reading “Finally, an Explanation for the Cold Spot in the Cosmic Microwave Background”

Maybe Dark Matter is Warm, Not Cold

The early universe. Credit: Tom Abel & Ralf Kaehler (KIPACSLAC)/ AMNH/NASA

Since the “Golden Age of General Relativity” in the 1960s, scientists have held that much of the Universe consists of a mysterious invisible mass known as “Dark Matter“. Since then, scientists have attempted to resolve this mystery with a double-pronged approach. On the one hand, astrophysicists have attempted to find a candidate particle that could account for this mass.

On the other, astrophysicists have tried to find a theoretical basis that could explain Dark Matter’s behavior. So far, the debate has centered on the question of whether it is “hot” or “cold”, with cold enjoying an edge because of its relative simplicity. However, a new study conducted led by the Harvard-Smithsonian Center for Astrophysics (CfA) revits the idea that Dark Matter might actually be “warm”.

Continue reading “Maybe Dark Matter is Warm, Not Cold”

New observations from the Planck mission don’t resolve anomalies like the CMB “cold spot”

Cosmic Microwave Background. Scientists compared this to modern galaxy distributions to track dark matter. Copyright: ESA/Planck Collaboration
Cosmic Microwave Background. Scientists compared this to modern galaxy distributions to track dark matter. Copyright: ESA/Planck Collaboration

Back in 2013, the European Space Agency released its first analysis of the data gathered by the Planck observatory. Between 2009 and 2013, this spacecraft observed the remnants of the radiation that filled the Universe immediately after the Big Bang – the Cosmic Microwave Background (CMB) – with the highest sensitivity of any mission to date and in multiple wavelengths.

In addition to largely confirming current theories on how the Universe evolved, Planck’s first map also revealed a number of temperature anomalies – like the CMB “Cold Spot” – that are difficult to explain. Unfortunately, with the latest analysis of the mission data, the Planck Collaboration team has found no new evidence for these anomalies, which means that astrophysicists are still short of an explanation.

Continue reading “New observations from the Planck mission don’t resolve anomalies like the CMB “cold spot””

How to Know Once and For All if the Universe Began With a Bang or a Bounce

Illustration of the Big Bang Theory
The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since. Credit: grandunificationtheory.com

According to the Big Bang cosmological model, our Universe began 13.8 billion years ago when all the matter and energy in the cosmos began expanding. This period of “cosmic inflation” is believed to be what accounts for the large-scale structure of the Universe and why space and the Cosmic Microwave Background (CMB) appear to be largely uniform in all directions.

However, to date, no evidence has been discovered that can definitely prove the cosmic inflation scenario or rule out alternative theories. But thanks to a new study by a team of astronomers from Harvard University and the Harvard-Smithsonian Center for Astrophysics (CfA), scientists may have a new means of testing one of the key parts of the Big Bang cosmological model.

Continue reading “How to Know Once and For All if the Universe Began With a Bang or a Bounce”