Incoming! CME On Its Way Toward Earth

As you read this, a huge cloud of charged solar particles is speeding toward our planet, a coronal mass ejection resulting from the X1.4-class flare that erupted from sunspot 1520 on July 12. The CME is expected to collide with Earth’s magnetic field on Saturday, potentially affecting satellite operations and tripping alarms on power grids, as well as boosting auroral activity. It’s on its way, and all we can do is wait. (Thank goodness for magnetospheres!)

Actually, the effects from the incoming CME aren’t expected to be anything particularly dramatic. NOAA is predicting a geomagnetic storm level raging from G2 to G4, which although ranges from “moderate” to “severe” a G2 (Kp = 6) is most likely, according to Dr. C. Alex Young from NASA’s Goddard Space Flight Center.

[Read: What Is a CME?]

“A G2 level storm can cause some power fluctuations that may set off some voltage alarms for power companies,” Dr. Young told Universe Today. “Damage to transformers is possible for longer events, but unlikely. Satellite companies may have to make some orbit corrections for their satellites, and at higher latitudes where there are aurora they can be some disruption of high frequency radio broadcasts.

“All in all the effects should be minor,” he concluded.

And this may not be the last we hear from 1520, either.

“Its complexity has decreased but it is still large and has a ‘delta’ configuration,” added Dr. Young, “when there is opposite polarity magnetic field of the umbra within the penumbra of the sunspot. This is an unstable configuration that is indicative of larger releases of energy, lots of flares — in particular M and X flares.”

Below is a computer model of the CME from Goddard Space Weather Center. Impact with Earth is expected on 7/14 at 10:20 UT (+-7 hrs), 6:20 am EDT.

Auroras may be visible at lower latitudes this weekend, so check the NOAA’s updated auroral oval map to see if visibility extends into your area over the next several nights. Hopefully aurora photographers around the world will be able to get some great photos of a summer sky show!

You can keep up with the latest news on solar activity on Dr. Young’s blog, The Sun Today. And of course, stay tuned to Universe Today for more updates on any noteworthy space weather!

The video below uses SDO AIA footage in 131(teal), 171(gold) and 335 (blue) angstrom wavelengths, and shows the X1.4 class flare erupted from the center of the sun on July 12, 2012 at 12:52 PM EDT. Each wavelength shows different temperature plasma in the sun’s atmosphere. 171 shows 600,000 Kelvin plasma, 335 shows 2.5 million Kelvin plasma, and 131 shows 10 million Kelvin plasma. The final shot is a composite of 171 and 335 angstrom footage.

Top image: illustration of a CME about to impact Earth’s magnetosphere (NASA). Model animation: NASA/GSFC. Video courtesy NASA/SDO and the AIA science team.

UPDATE: The CME took a bit longer to arrive than expected, but impact with Earth’s magnetic field was detected at around 1800 UT (11 a.m. PDT/2 p.m. EDT), activating a geomagnetic storm. According to SpaceWeather.com: At the moment, conditions appear favorable for auroras over high-latitude places such as Canada, Scandinavia, Antarctica and Siberia. It is too early to say whether the storm will intensify and bring auroras to middle latitudes as well.

Sunspot 1520 Fires a Flare

Remember that cool animation I posted earlier of AR1520 and how I said there’s no guarantee it wouldn’t unleash an X-class flare? Well at 16:48 UT today, it did. Just goes to show there’s no guarantees in space!

The X1.4-class flare will most likely affect Earth’s magnetic field as 1520 is directly facing us. Stay tuned for more!

Video & image: NASA/SDO and the AIA science team.

UPDATE: The CME associated with this flare is expected to impact Earth’s magnetosphere on Saturday between 3 and 5 p.m. EDT with “moderate to severe” activity possible. See an animated tracker here. (H/T to Francis Reddy at GSFC.) Also in the lineup for impact are MESSENGER and MSL.

Fireworks from the Sun

From July 2 to July 5, the Sun shot off a whopping eighteen M-class solar flares. Most originated from Active Region 1515 and ranged from M1.1 to M6.1. On July 4th alone, there were seven M-class solar flares. According to SpaceWeather.com, big sunspot AR1515 appears to be on the verge of producing an X-class explosion. NOAA forecasters estimate an 80% chance of M-flares and a 10% chance of X-flares during the next 24 hours.
Continue reading “Fireworks from the Sun”

New Warning System Designed to Keep Astronauts Safe from Solar Storms

A new solar storm prediction system based in Antarctica could provide astronauts in space warning time of over two hours for them to take cover after massive flares or Coronal Mass Ejections erupt from the Sun. The South Pole Neutron Monitor is able to forecast the radiation intensity of solar protons using two different types of neutron detectors installed at the geographic South Pole, which measures gigaelectron volt neutrons that are produced during a solar storm.

The designers of the device have been testing it and say it could provide a warning times of up to 166 minutes, depending on the protons’ energy. Additionally, the team says, it is a practical system for forecasting peak intensity of solar energetic protons in the tens to hundreds of megaelectron volt energy range.

With activity on the Sun increasing as the Solar Maxiumum approaches, there will likely be heightened rates of flares and CMEs, putting at risk the human presence in space, which will likely be ever-increasing, with the advent of commercial space flights and NASA’s plans to send astronauts into deep space, along with crews of six that are usually on board the International Space Station. Even people in airplanes at high altitudes near the poles can be exposed to this increased radiation. Exposure can potentially cause radiation sickness, with symptoms such as fever and vomiting.

During a solar flare or CME, particles from the Sun can be accelerated to very high energies—in some cases traveling near the speed of light. Protons with energies surpassing 100 megaelectron volts essentially sandblast everything in their path.

S.Y. Oh from Chungnam National University in South Korea and an international team of researchers have created and installed the warning system at the Amundsen-Scott South Pole Station. Using one detector located indoors and another outside, they can measure the intensity of the much faster gigaelectron volt neutrons also produced during a solar storm when protons interact with Earth’s atmosphere. By combining the observations of the two detectors, they can then extrapolate this spectrum to estimate the peak intensity and event-averaged flux (fluence) of the later-arriving megaelectron volt protons.

The team compared their predictions for 12 solar events against observations made by geosynchronous satellites, such as some of the GOES satellites, and found their measurements were similar for intensity and fluence predictions for protons with energies higher than 40 and 80 megaelectron volts, respectively.

The researchers say the system could be useful for forecasting radiation hazard, because peak intensity and fluence are closely related to the known medical thresholds of radiation doses.

The lead times would allow for astronauts to take shelter in a shielded area of their spacecraft, or polar-flying airplanes ample time to reduce their altitude to be protected by Earth’s magnetic field.

Read the team’s paper: South Pole neutron monitor forecasting of solar proton radiation intensity

Lead image caption: The South Pole neutron monitor. Credit: University of Delaware.

Source: AGU

How Big Are Sunspots?

Sunspots from today and from 65 years ago, with planet sizes for comparison.

[/caption]

The short answer? Really big. The long answer? Really, really big.

The image above shows sunspot regions in comparison with the sizes of Earth and Jupiter, demonstrating the sheer enormity of these solar features.

Sunspots are regions where the Sun’s internal magnetic fields rise up through its surface layers, preventing convection from taking place and creating cooler, optically darker areas. They often occur in pairs or clusters, with individual spots corresponding to the opposite polar ends of magnetic lines.

(Read “What Are Sunspots?”)

The image on the left was acquired by NASA’s Solar Dynamics Observatory on May 11, 2012, showing Active Region 11476. The one on the right comes courtesy of the Carnegie Institution of Washington, and shows the largest sunspot ever captured on film, AR 14886. It was nearly the diameter of Jupiter — 88,846 miles (142,984 km)!

“The largest sunspots tend to occur after solar maximum and the larger sunspots tend to last longer as well,” writes SDO project scientist Dean Pesnell on the SDO is GO blog. “As we move through solar maximum in the northern hemisphere and look to the south to pick up the slack there should be plenty of sunspots to watch rotate by SDO.”

Sunspots are associated with solar flares and CMEs, which can send solar storms our way and negatively affect satellite operation and impact communications and sensitive electronics here on Earth. As we approach the peak of the current solar maximum cycle, it’s important to keep an eye — or a Solar Dynamics Observatory! — on the increasing activity of our home star.

(Image credit: NASA/SDO and the Carnegie Institution)

How Big Was Monday’s CME?

Solar flares pose a major hazard to electronics and infrastructure in Low Earth Orbit, but they may have played a role in kick-starting life on Earth. Credit: NASA/SDO/J. Major

April 16's M-class solar flare erupted with a CME that could dwarf the Earth, shown here to scale. (NASA/SDO/J. Major)

This big! The M1.7-class flare that erupted from active region 1461 on Monday, April 16 let loose an enormous coronal mass ejection many, many times the size of Earth, making this particular writer very happy that our planet was safely tucked out of aim at the time… and 93 million miles away.

The image above was obtained by NASA’s Solar Dynamics Observatory’s AIA 304 imaging instrument on Monday during the height of the event. I rotated the disk of the Sun 90 degrees to get a landscape look over the eastern limb, cropped it down and then added an Earth image to scale — just to show how fantastically huge our home star really is.

(Read “Watch it Rain on the Sun”)

Some minor editing was done to increase contrast and heighten detail in the eruption.

The CME was not directed our way, but it was aimed at NASA’s STEREO-B spacecraft, which will encounter the ejected material full-on.

Read more about this event in a previous Universe Today post here, and check out hi-def videos of the CME from SDO here.

Image credit: NASA/SDO and the AIA science team. Edited by Jason Major.

Big Blast from the Sun

The CME we reported on earlier today was obviously just a warm up to the latest blast: A beautiful prominence eruption producing a larger CME off the east limb (left side) of the sun on April 16, 2012 at about 17:45 UTC (1:45 pm EDT). The event, which also produced an M1.7-class solar flare, was not Earth-directed, say scientists from the Solar Dynamics Observatory. But SpaceWeather.com says the blast confirms suspicions that a significant active region is rotating onto the Earth-side of the sun.

The Sun Spits Out a Coronal Mass Ejection

A CME from the Sun on April 15, 2012. Credit: Solar Dynamics Observatory

Ever squirted water out of your mouth when playing in a swimming pool or lake? This Coronal Mass Ejection (CME) release by the Sun on April 15, 2012 looks reminiscent of such water spouting. But this burst of solar plasma being hurled from the eastern limb of the Sun is more like an explosion, as such CMEs can release up to 100 billion kg (220 billion lb) of material, and the speed of the ejection can reach 1000 km/second (2 million mph) in some flares. Scientists at the Solar Dynamics Observatory say some of the explosions approach the power in one billion hydrogen bombs! In this video, the Sun hurled a cloud of plasma towards the STEREO B spacecraft and SDO captured the event in a couple of different wavelengths.

Coronal Mass Ejections (CMEs) are balloon-shaped bursts of solar wind rising above the solar corona, expanding as they climb. Solar plasma is heated to tens of millions of degrees, and electrons, protons, and heavy nuclei are accelerated to near the speed of light. The super-heated electrons from CMEs move along the magnetic field lines faster than the solar wind can flow. Rearrangement of the magnetic field, and solar flares may result in the formation of a shock that accelerates particles ahead of the CME loop.

[/caption]

Watch Mercury Get Smacked By CMEs

mercuryandsun.thumbnail.jpg

The bright object in the center of this video sequence is the planet Mercury, seen by NASA’s STEREO-B spacecraft as it was pummeled by wave after wave of solar material ejected from the Sun during the week of March 25 – April 2, 2012.

The video above was released by NASA’s Goddard Space Flight Center earlier today. The Sun is located just off-frame to the left, while Earth would be millions of miles to the right.

Proof that it’s not easy being first rock from the Sun!

Video credit: NASA/GSFC/STEREO