Comet Elenin: Just Passing By

Is Earth's impending doom close at hand?

[/caption]

It starts out innocently enough: a small speck against a field of background stars, barely noticeable in the image data. But… it’s a speck that wasn’t there before. Subsequent images confirm its existence – there’s something out there. Something bright, something large, and it’s moving through our solar system very quickly. The faint blur indicates that it’s a comet, an icy visitor from the outermost reaches of the solar system. And it’s headed straight toward Earth.

Exhaustive calculations are run and re-run. Computer simulations are executed. All possibilities are taken into consideration, and yet there’s no alternative to be found; our world will face a close encounter with a comet in mere months’ time. Phone calls are made, a flurry of electronic messages fly between computer terminals across the world, consultations are held with top experts in the field. We are unprepared… what can we do? What does this mean for civilization as we know it? What will this speeding icy bullet from outer space do to our planet?

The answer? Nothing.

Nothing at all. In fact, it probably won’t even be very interesting to look at – if you can even find it when it passes by.

(Sorry for the let-down.)

There’s been a lot of buzz in the past several months regarding Comet Elenin, a.k.a. C/2010 X1,  which was discovered by Russian astronomer Leonid Elenin on December 10, 2010. Elenin spotted the comet using a telescope in New Mexico remotely from his location in Lyubertsy, Russia. At that time it was about 647 million kilometers (401 million miles) from Earth… in the time since it has closed the distance considerably, and is now around 270 million km away. Elenin is a long-period comet, which means it has a rather large orbit around the Sun… it comes in from a vast distance, swings around the Sun and heads back out to the depths of the solar system – a round trip lasting over 10,000 years. During its current trip it will pass by Earth on October 16, coming as close as 35 million km (22 million miles).

Elenin's orbit via the JPL Small-Body Database Browser

Yes, 22 million miles.

That’s pretty far.

Way too far for us to be affected by anything a comet has to offer. Especially a not-particularly-large comet like Elenin.

Some of the doomy-gloomy internet sites have been mentioning the size of Elenin as being 80,000 km across. This is a scary, exaggerated number that may be referring to the size of Elenin’s coma – a hazy cloud of icy particles that surrounds a much, much smaller nucleus. The coma can be extensive but is insubstantial; it’s akin to icy cigarette smoke. Less than that, in fact… a comet’s coma and tail are even more of a vacuum than can be reproduced in a lab on Earth! In reality most comets have a nucleus smaller than 10km…that’s less than a billionth the mass of Earth (and a far cry from 80,000 km.) We have no reason to think that Elenin is any larger than this – it’s most likely smaller.

Ok, but how about the gravitational and/or magnetic effect of a comet passing by Earth? That’s surely got to do something, right? To Earth’s crust, or the tides? For the answer to that, I will refer to Don Yeomans, a researcher at NASA’s Near-Earth Object Program Office at JPL:

“Comet Elenin will not only be far away, it is also on the small side for comets. And comets are not the most densely-packed objects out there. They usually have the density of something akin to loosely packed icy dirt,” said Yeomans. “So you’ve got a modest-sized icy dirtball that is getting no closer than 35 million kilometers. It will have an immeasurably miniscule influence on our planet. By comparison, my subcompact automobile exerts a greater influence on the ocean’s tides than comet Elenin ever will.”

“It will have an immeasurably miniscule influence on our planet. By comparison, my subcompact automobile exerts a greater influence on the ocean’s tides than comet Elenin ever will.”

– Don Yeomans, NASA / JPL

And as far as the effect from Elenin’s magnetic field goes… well, there is no effect. Elenin, like all comets, doesn’t have a magnetic field. Not much else to say there.

But the claims surrounding Elenin have gone much further toward the absurd. That it’s going to encounter another object and change course to one that will cause it to impact Earth, or that it’s not a comet at all but actually a planet – Nibiru, perhaps? – and is on a collision course with our own. Or (and I particularly like this one) that alien spaceships are trailing Elenin in such a way as to remain undetected until it’s too late and then they’ll take over Earth, stealing our water and natural resources and turning us all into slaves and/or space munchies… or however the stories go. (Of course the government and NASA and Al Gore and Al Gore’s hamster are all in cahoots and are withholding this information from the rest of us. That’s a given.) These stories are all just that – stories – and have not a shred of science to them, other than a heaping dose of science fiction.

“We live in nervous times, and conspiracy theories and predictions of disaster are more popular than ever. I like to use the word cosmophobia for this growing fear of astronomical objects and phenomena, which periodically runs amuck on the Internet. Ironically, in pre-scientific times, comets were often thought to be harbingers of disaster, mostly because they seemed to arrive unpredictably – unlike the movements of the planets and stars, which could be tracked on a daily and yearly basis.”

– David Morrison, planetary astronomer and senior scientist at NASA’s Ames Research Center

The bottom line is this: Comet C/2010 X1 Elenin is coming, and it will pass by Earth at an extremely safe distance – 100 times the distance from Earth to the Moon. It will not be changing direction between now and then, it will not exert any gravitational effect on Earth, its magnetic field is nonexistent and there are no Star Destroyers cruising in its wake. The biggest effect it will have on Earth is what we are able to learn about it as it passes – after all, it is a visitor from the far reaches of our solar system and we won’t be seeing it again for a very, very long time.

I’m sure we’ll have found something else to be worried about long before then.

“This intrepid little traveler will offer astronomers a chance to study a relatively young comet that came here from well beyond our solar system’s planetary region. After a short while, it will be headed back out again, and we will not see or hear from Elenin for thousands of years. That’s pretty cool.”

– Don Yeomans

For more information about Elenin, check out this JPL news release featuring Don Yeomans, and there’s a special public issue of Astronomy Beat, a newsletter from the Astronomical Society of the Pacific, that features David Morrison of NASA’s Ames Research Center discussing many of the misconceptions about Elenin.

An updated chart of Elenin’s orbit and statistics can be viewed here.

Top image © Jason Major

More Surprises From Pluto

Artist's illustration of Pluto's surface. Credit: NASA

[/caption]

Ah, Pluto. Seems every time we think we’ve got it figured out, it has a new surprise to throw at us.

First spotted in 1930 by a young Clyde Tombaugh, for 76 years it enjoyed a comfortable position as the solar system’s most distant planet. Then a controversial decision in 2006 by the International Astronomical Union, spurred by suggestions from astronomer (and self-confessed “planet-killer”) Mike Brown*, relegated Pluto to a new class of worlds called “dwarf planets”. Not quite planets and not quite asteroids, dwarf planets cannot entirely clear their orbital path with their own gravitational force and thus miss out on full planetary status. Besides immediately making a lot of science textbooks obsolete and rendering the handy mnemonic “My Very Eager Mother Just Served Us Nine Pies” irrelevant (or at least confusing), the decision angered many people around the world, both in and out of the scientific community. Pluto is a planet, they said, it always has been and always will be! Save Pluto! the schoolkids wrote in crayon to planetarium directors. The world all of a sudden realized how much people liked having Pluto as the “last” planet, and didn’t want to see it demoted by decision, especially a highly contested one.

Yet as it turns out, Pluto really may not be a planet after all.

It may be a comet.

But…that’s getting ahead of ourselves. First things first.

Discovery data showing carbon monoxide spectrum. Credit: J.S. Greaves / Joint Astronomy Centre.

Recent discoveries by a UK team of astronomers points to the presence of carbon monoxide in Pluto’s atmosphere. Yes, Pluto has an atmosphere; astronomers have known about it since 1988. At first assumed to be about 100km thick, it was later estimated to extend out about 1500km and be composed of methane gas and nitrogen. This gas would expand from the planet’s – er, dwarf planet’s – surface as it came closer to the Sun during the course of its eccentric 248-year orbit and then freeze back onto the surface as it moved further away. The new findings from the University of St Andrews team, made by observations with the James Clerk Maxwell telescope in Hawaii, identify an even thicker atmosphere containing carbon monoxide that extends over 3000 km, reaching nearly halfway to Pluto’s largest moon, Charon.

It’s possible that this carbon monoxide atmosphere may have expanded outwards from Pluto, especially in the years since 1989 when it made the closest approach to the Sun in its orbit. Surface heating (and the term “heating” is used scientifically here…remember, at around -240ºC (-400ºF) Pluto would seem anything but balmy to us!) by the Sun’s radiation would have warmed the surface and expelled these gases outwards. This also coincides with observations made by the Hubble Space Telescope over the course of four years, which revealed varying patterns of dark and light areas on Pluto’s surface – possibly caused by the thawing of frozen areas that shift and reveal lighter surface material below.

“Seeing such an example of extra-terrestrial climate-change is fascinating. This cold simple atmosphere that is strongly driven by the heat from the Sun could give us important clues to how some of the basic physics works, and act as a contrasting test-bed to help us better understand the Earth’s atmosphere.”

–  Dr. Jane Greaves, Team Leader

In fact, carbon monoxide may be the key to why Pluto even still has an atmosphere. Unlike methane, which is a greenhouse gas, carbon monoxide acts as a coolant; it may be keeping Pluto’s fragile atmosphere from heating up too much and escaping into space entirely! Over the decades and centuries that it takes for Pluto to complete a single year, the balance between these two gases must be extremely precise.

Read more about this discovery on the Royal Astronomical Society’s site.

Pluto's elliptical orbit

So here we have Pluto exhibiting an expanding atmosphere of thawing expelled gas as it gets closer to the Sun in an elliptical, eccentric orbit. (Sound familiar?) And now there’s another unusual, un-planet-like feature that’s being put on the table: Pluto may have a tail.

Actually this is an elaboration of the research results coming from the same team at the University of St Andrews. The additional element here is a tiny redshift detected in the carbon monoxide signature, indicating that it is moving away from us in an unusual way. It’s possible that this could be caused by the top layers of Pluto’s atmosphere – where the carbon monoxide resides – being blown back by the solar wind into, literally, a tail.

That sounds an awful lot, to this particular astronomy reporter anyway, like a comet.

Just saying.

Anyway, regardless of what Pluto is or isn’t, will be called or used to be called, there’s no denying that it is a fascinating little world that deserves our attention. (And it will be getting plenty of that come July 2015 when the New Horizons spacecraft swings by for a visit!) I’m sure there’s no one here who would argue that fact.

New Horizons’ upcoming visit will surely answer many questions about Pluto – whatever it is – and most likely raise even more.

 

Artist's impression of Pluto's huge atmosphere of carbon monoxide.Credit:P.A.S. Cruickshank.

The new discovery was presented by team leader Dr. Jane Greaves on Wednesday, April 20 at the National Astronomy Meeting in Wales.

Article reference: arxiv.org/abs/1104.3014: Discovery Of Carbon Monoxide In The Upper Atmosphere Of Pluto

 

*No disrespect to Mr. Brown intended…he was just performing science as he saw fit!

 

 

What Are Comets Made Of?

Artists concept of the stardust spacecraft flying throug the gas and dust from comet Wild 2. Credit: NASA/JPL

[/caption]What are comets made of? Good question! Comet nuclei are loose collections of ice, dust and small rocky particles, ranging from a few kilometers to tens of kilometers across. As a comet approaches the inner solar system, solar radiation causes the volatile materials within the comet to vaporize and stream out of the nucleus, carrying dust away with them. The streams of dust and gas form a huge, extremely tenuous atmosphere around the comet called the coma, and the force exerted on the coma by the radiation pressure of the Sun and solar wind cause a tail to form. The tail always points away from the sun.

In order to understand what are comets made of, we need to break down the three main parts of the comet: the nucleus, coma, and tail. Comet nuclei are known to range from about 100 meters to more than 40 kilometers across. They are composed of rock, dust, ice and frozen gases such as carbon monoxide, carbon dioxide, methane, and ammonia. Sometimes called dirty snowballs, recent studies have shown that the ice of a comet is covered by a crust. Comets also contain a variety of organic compounds as well as the gases already mentioned. Some of these are methanol, hydrogen cyanide, formaldehyde, ethanol, and ethane. More complex molecules such as long-chain hydrocarbons and amino acids may also be in comets. Because of their low mass, comets cannot become spherical under their own gravity, and will thus have irregular shapes.

The coma is the the nebulous envelope around the nucleus of a comet. It is formed when the comet passes close to the Sun on a highly elliptical orbit. As the comet warms, parts of it turn from solid to gas(sublimate). Larger charged dust particles are left along the comet’s orbital path while smaller charged particles are pushed away from the Sun into the comet’s tail by solar wind. This helps astronomers distinguish comets from stars because it creates a fuzzy appearance.

The tail is illuminated by the Sun and may become visible from Earth when a comet passes through the inner solar system, the dust reflecting sunlight directly and the gases glowing from ionization. The streams of dust and gas each form their own distinct tail, pointing in slightly different directions. The tail of dust is left behind in the comet’s orbit in such a manner that it often forms a curved tail called the antitail. At the same time, the ion tail, made of gases, always points directly away from the Sun, as this gas is more strongly affected by the solar wind than is dust, following magnetic field lines rather than an orbital trajectory. Paralax viewing from the Earth may sometimes mean the tails appear to point in opposite direction.

Understanding the three parts of the comet is essential to know what are comets made of. Here is an article with a little more detail. Here on Universe Today there is a great article on a comet/asteroid hybrid. Astronomy Cast has another outstanding episode about solar dust.

Source: NASA

Amino Acid Found in Stardust Comet Sample

Artists concept of the stardust spacecraft flying throug the gas and dust from comet Wild 2. Credit: NASA/JPL

[/caption]
NASA scientists studying the comet samples returned by the Stardust spacecraft have discovered glycine, a fundamental building block of life. Stardust captured the samples from comet Wild 2 in 2004 and returned them to Earth in 2006. “Glycine is an amino acid used by living organisms to make proteins, and this is the first time an amino acid has been found in a comet,” said Dr. Jamie Elsila of NASA’s Goddard Space Flight Center. “Our discovery supports the theory that some of life’s ingredients formed in space and were delivered to Earth long ago by meteorite and comet impacts.”

Proteins are a major component of all living cells, and amino acids are the building blocks of protein. Just as the 26 letters of the alphabet are arranged in limitless combinations to make words, life uses 20 different amino acids in a huge variety of arrangements to build millions of different proteins.

Stardust's racket-sized collector made from aerogel.  Credit: NASA/JPL
Stardust's racket-sized collector made from aerogel. Credit: NASA/JPL

As Stardust passed through dense gas and dust surrounding the icy nucleus of Wild 2 (pronounced “Vilt-2”), special collection grids filled with aerogel – a novel sponge-like material that’s more than 99 percent empty space – gently captured samples of the comet’s gas and dust. The grid was stowed in a capsule which detached from the spacecraft and parachuted to Earth on January 15, 2006. Since then, scientists around the world have been busy analyzing the samples to learn the secrets of comet formation and our solar system’s history.

Earlier, preliminary analysis in the Goddard labs detected glycine in both aluminum foil that lined the collection grids, as well as in a sample of the aerogel. However, since glycine is used by terrestrial life, at first the team was unable to rule out contamination from sources on Earth. “It was possible that the glycine we found originated from handling or manufacture of the Stardust spacecraft itself. We spent two years testing and developing our equipment to make it accurate and sensitive enough to analyze such incredibly tiny samples,” said Elsila. The new research used isotopic analysis of the foil to rule out that possibility.

Isotopes are versions of an element with different weights or masses; for example, the most common carbon atom, Carbon 12, has six protons and six neutrons in its center (nucleus). However, the Carbon 13 isotope is heavier because it has an extra neutron in its nucleus. A glycine molecule from space will tend to have more of the heavier Carbon 13 atoms in it than glycine that’s from Earth. That is what the team found. “We discovered that the Stardust-returned glycine has an extraterrestrial carbon isotope signature, indicating that it originated on the comet,” said Elsila.

Another team member Dr. Daniel Glavin said, “Based on the foil and aerogel results it is highly probable that the entire comet-exposed side of the Stardust sample collection grid is coated with glycine that formed in space.”

The team’s research will be published in the journal Meteoritics and Planetary Science.

Source: NASA

Half Comet-Half Asteroid a Fluke? Nope

Images of known MBCs from UH 2.2-meter telescope data. Credit: Henry Hsieh

[/caption]
Back in 1996, astronomers discovered a strange object in the asteroid belt. They decided it was either a “lost” comet or an icy asteroid, as it ejected dust like a comet but had an orbit like an asteroid. No one had ever seen anything like the object, called 133P. Ever since it was found, astronomers have wondered if it was just an oddity — one of a kind. We now know it is not, and the discovery of more of these half asteroids/half comets means there is a new class of objects in our solar system.

One of these new objecst, 176P/LINEAR is also emitting dust as it orbits in the asteroid belt. It was found by Henry Hsieh at Queen’s University, Belfast in Northern Ireland. Hsieh has been working to figure out the unusual behavior of 133P. He hypothesized that either one of two things could explain the existence of the comet-asteroid: “(1.) 133P is a classical comet from the outer solar system that has evolved onto a main-belt orbit, or (2.) 133P is a dynamically ordinary main-belt asteroid on which subsurface ice has recently been exposed,” Hsieh wrote in his paper. “If (1) is correct, the expected rarity of a dynamical transition onto an asteroidal orbit implies that 133P could be alone in the main belt. In contrast, if (2) is correct, other icy main-belt objects should exist and could also exhibit cometary activity.”

Hsieh thought it was unlikely a comet could have been kicked around enough to end up in orbit in the asteroid belt, so he followed the assumption that 133P was a dynamically ordinary, yet icy main-belt asteroid. He set out to prove the hypothesis that 133P-like objects should be common and could be found by an well-designed observational survey.

Hsieh made 657 observations of 599 asteroids in the asteroid belt and found 176P/LINEAR. He also determined the asteroid is partially made of ice, which is being ejected following a collision with another object, thus the comet-like attributes.

Additionally, since there is evidence for past and even present water in main-belt asteroids, Hsieh says statistically there should be around 100 currently active Main Belt Comets (MBCs) as these objects are called, among the kilometer-scale, low-inclination, outer belt asteroid population.

The Technology Review blog offered suggestions for what to name these new objects that are half comet and half asteroid: “Comsteroids? Asteromets? Hsiehroids?”

Hseih’s paper,
Hseih’s website on MBCs
Sources: Technology Review Blog, arXiv

SoHO Celebrates its 12th Birthday

171cycle_dates.thumbnail.jpg

On December 2nd, 1995 a large joint ESA and NASA mission was launched to gain an insight to the dynamics of the Sun and its relationship with the space between the planets. 12 years on, the Solar and Heliospheric Observatory (SoHO) continues to witness some of the largest explosions ever seen in the solar system, observes beautiful magnetic coronal arcs reach out into space and tracks comets as they fall to a fiery death. In the line of duty, SoHO even suffered a near-fatal shutdown (in 1998). As far as astronomy goes, this is a tough assignment.

By the end of 1996, SoHO had arrived at the First Lagrange Point between the Earth and the Sun (a gravitationally stable position balanced by the masses of the Sun and Earth, about 1.5 million km away) and orbits this silent outpost to this day. It began to transmit data at “solar minimum”, a period of time at the beginning of the Solar Cycle, where sunspots are few and solar activity is low, and continues toward the upcoming solar minimum after the exciting firworks of the last “solar maximum”. This gives physicists another chance to observe the majority of a Solar Cycle with a single observatory (the previous long-lasting mission was the Japanese Yohkoh satellite from 1991-2001).

On board this ambitious observatory, 11 instruments constantly gaze at the Sun, observing everything from solar oscillations (“Sun Quakes�), coronal loops, flares, CMEs and the solar wind; just about everything the Sun does. SoHO has become an indispensable mission for helping us to understand how the Sun influences the environment around our planet and how this generates the potentially dangerous “Space Weather�.

The SoHO mission site confidently states that SoHO will remain in operation far into the next Solar Cycle. I hope this is the case as the new Hinode and STEREO probes will be good company for this historic mission.

Source: NASA News Release