ESA scientists have found one additional image from the Rosetta spacecraft hiding in the telemetry. This new image was found in the last bits of data sent by Rosetta immediately before it shut down on the surface of Comet 67P/Churyumov–Gerasimenko last year.
Planetary astronomer Andy Rivkin noted on Twitter that for size context, he estimates the block just right of center looks to be about the size of a hat. That’s a fun comparison to have (not to mention thinking about hats on Comet 67P!)
The picture has a scale of 2 mm/pixel and measures about 1 m across. It’s a really ‘close’ close-up of Comet 67P.
“The last complete image transmitted from Rosetta was the final one that we saw arriving back on Earth in one piece moments before the touchdown at Sais,” said Holger Sierks, principal investigator for the OSIRIS camera at the Max Planck Institute for Solar System Research in Göttingen, Germany. “Later, we found a few telemetry packets on our server and thought, wow, that could be another image.”
The team explains that the image data were put into telemetry ‘packets’ aboard Rosetta before they were transmitted to Earth, and the final images were split into six packets. However, for the very last image, the transmission was interrupted after only three full packets. The incomplete data was not recognized as an image by the automatic processing software, but later, the engineers in Göttingen could make sense of these data fragments to reconstruct the image.
You’ll notice it is rather blurry. The OSIRIS camera team says this image only has about 53% of the full data and “therefore represents an image with an effective compression ratio of 1:38 compared to the anticipated compression ratio of 1:20, meaning some of the finer detail was lost.”
That is, it gets a lot blurrier as you zoom in compared with a full-quality image. They compared it to compressing an image to send via email, versus an uncompressed version that you would print out and hang on your wall.
Rosetta’s final resting spot is in a region of active pits in the Ma’at region on the two-lobed, duck-shaped comet.
Launched in 2004, Rosetta traveled nearly 8 billion kilometers and its journey included three Earth flybys and one at Mars, and two asteroid encounters. It arrived at the comet in August 2014 after being in hibernation for 31 months.
After becoming the first spacecraft to orbit a comet, it deployed the Philae lander in November 2014. Philae sent back data for a few days before succumbing to a power loss after it unfortunately landed in a crevice and its solar panels couldn’t receive sunlight.
But Rosetta showed us unprecedented views of Comet 67P and monitored the comet’s evolution as it made its closest approach and then moved away from the Sun. However, Rosetta and the comet moved too far away from the Sun for the spacecraft to receive enough power to continue operations, so the mission plan was to set the spacecraft down on the comet’s surface.
And scientists have continued to sift through the data, and this new image was found. Who knows what else they’ll find, hiding the data?
To our Solar System, “close-encounters” with other stars happen regularly – the last occurring some 70,000 years ago and the next likely to take place 240,000 to 470,000 years from now. While this might sound like a “few and far between” kind of thing, it is quite regular in cosmological terms. Understanding when these encounters will happen is also important since they are known to cause disturbances in theOort Cloud, sending comets towards Earth.
Thanks to a new study by Coryn Bailer-Jones, a researcher from the Max Planck Institute for Astronomy, astronomers now have refined estimates on when the next close-encounters will be happening. After consulting data from the ESA’s Gaia spacecraft, he concluded that over the course of the next 5 million years, that the Solar System can expect 16 close encounters, and one particularly close one!
As noted, these types of disturbances have happened many times throughout the history of the Solar System. In order to dislodge icy objects from their orbit in the Oort Cloud – which extends out to about 15 trillion km (100,000 AU) from our Sun – and send them hurling into the inner Solar System, it is estimated that a star would need to pass within 60 trillion km (37 trillion mi; 400,000 AU) of our Sun.
While these close encounters pose no real risk to our Solar System, they have been known to increase comet activity. As Dr. Bailer-Jones explained to Universe Today via email:
“Their potential influence is to shake up the Oort cloud of comets surrounding our Sun, which could result in some being pushed into the inner solar system where is chance they could impact with the Earth. But the long-term probability of one such comet hitting the Earth is probably lower than the probability the Earth is hit by a near-Earth asteroid. So they don’t pose much more danger.”
One of the goals of the Gaia mission, which launched back in 2013, was to collect precise data on stellar positions and motions over the course of its five-year mission. After 14 months in space, the first catalogue was released, which contained information on more than a billion stars. This catalogue also contained the distances and motions across the sky of over two million stars.
By combining this new data with existing information, Dr. Bailer-Jones was able to calculate the motions of some 300,000 stars relative to the Sun over a five million year period. As he explained:
“I traced the orbits of stars observed by Gaia (in the so-called TGAS catalogue) backwards and forwards in time, to see when and how close they would come to the Sun. I then computed the so-called ‘completeness function’ of TGAS to find out what fraction of encounters would have been missed by the survey: TGAS doesn’t see fainter stars (and the very brightest stars are also omitted at present, for technical reasons), but using a simple model of the Galaxy I can estimate how many stars it is missing. Combining this with the actual number of encounters found, I could estimate the total rate of stellar encounters (i.e. including the ones not actually seen). This is necessarily a rather rough estimate, as it involves a number of assumptions, not least the model for what is not seen.”
From this, he was able to come up with a general estimate of the rate of stellar encounters over the past 5 million years, and for the next 5 million. He determined that the overall rate is about 550 stars per million years coming within 150 trillion km, and about 20 coming closer than 30 trillion km. This works out to about one potential close encounter every 50,000 years or so.
Dr. Bailor-Jones also determined that of the 300,000 stars he observed, 97 of them would pass within 150 trillion km (93 trillion mi; 1 million AU) of our Solar System, while 16 would come within 60 trillion km. While this would be close enough to disturb the Oort Cloud, only one star would get particularly close. That star is Gliese 710, a K-type yellow dwarf located about 63 light years from Earth which is about half the size of our Sun.
According to Dr. Bailer-Jones’ study, this star will pass by our Solar System in 1.3 million years, and at a distance of just 2.3 trillion km (1.4 trillion mi; 16 ,000AU). This will place it well within the Oort Cloud, and will likely turn many icy planetesimals into long-period comets that could head towards Earth. What’s more, Gliese 710 has a relatively slow velocity compared to other stars in our galaxy.
Whereas the average relative velocity of stars is estimated to be around 100.000 km/h (62,000 mph) at their closest approach, Gliese 710 will will have a speed of 50,000 km/h (31,000 mph). As a result, the star will have plenty of time to exert its gravitational influence on the Oort Cloud, which could potentially send many, many comets towards Earth and the inner Solar System.
Over the past few decades, this star has been well-documented by astronomers, and they were already pretty certain that it would experience a close encounter with our Solar System in the future. However, previous calculations indicated that it would pass within 3.1 to 13.6 trillion km (1.9 to 8.45 trillion mi; 20,722 to 90,910 AU) from our star system – and with a 90% certainty. Thanks to this most recent study, these estimates have been refined to 1.5–3.2 trillion km, with 2.3 trillion km being the most likely.
Again, while it might sound like these passes are on too large of a timescale to be of concern, in terms of the astronomical history, its a regular occurrence. And while not every close encounter is guaranteed to send comets hurling our way, understanding when and how these encounters have happened is intrinsic to understanding the history and evolution of our Solar System.
Understanding when a close encounters might happen next is also vital. Assuming we are still around when another takes place, knowing when it is likely to happen could allow us to prepare for the worst – i.e. if a comets is set on a collision course with Earth! Failing that, humanity could use this information to prepare a scientific mission to study the comets that are sent our way.
The second release of Gaia data is scheduled for next April, and will contain information on an estimated 1 billion stars. That’s 20 times as many stars as the first catalogue, and about 1% the total number of stars within the Milky Way Galaxy. The second catalog will also include information on much more distant stars, will which allow for reconstructions of up to 25 million years into the past and future.
As Dr. Bailer-Jones indicated, the release of Gaia data has helped astronomers considerably. “[I]t greatly improves on what we had before, in both number of stars and precision,” he said. “But this is really just a taster of what will come in the second data release in April 2018, when we will provide parallaxes and proper motions for around one billion stars (500 times as many as in the first data release).”
With every new release, estimates on the movements of the galaxy’s stars (and the potential for close encounters) will be refined further. It will also help us to chart when major comet activity took place within the Solar System, and how this might have played a role in the evolution of the planets and life itself.
On August 15th, 1977, astronomers using the Big Ear radio telescope at Ohio State University detected a 72-second radio signal coming from space. This powerful signal, which quickly earned the nickname the “Wow! signal”, appeared to be coming from the direction of the Sagittarius Constellation, and some went so far as to suggest that it might be extra-terrestrial in origin.
Since then, the Wow! signal has been an ongoing source of controversy among SETI researchers and astronomers. While some have maintained that it is evidence of extra-terrestrial intelligence (ETI), others have sought to find a natural explanation for it. And thanks a team of researchers from the Center of Planetary Science (CPS), a natural explanation may finally have been found.
In the past, possible explanations have ranged from asteroids and exoplanets to stars and even signals from Earth – but these have all been ruled out. And then in 2016, the Center for Planetary Science – a Florida-based non-profit scientific and astronomical organization – proposed a hypothesis arguing that a comet and/or its hydrogen cloud could be the cause.
This was based on the fact that the Wow! signal was transmitting at a frequency of 1,420 MHz, which happens to be the same frequency as hydrogen. This explanation was also appealing because the movement of the comet served as a possible explanation for why the signal has not been detected since. To validate this hypothesis, the CPS team reportedly conducted 200 observations using a 10-meter radio telescope.
This telescope, they claim, was equipped with a spectrometer and a custom feed horn designed to collect a radio signal centered at 1420.25 MHz. Between Nov. 27th, 2016, and Feb. 24th, 2017, they monitored the area of space where the Wow! signal was detected, and found that a pair of Solar comets (which had not been discovered in 1977) happened to conform to their observations, and could therefore have been the source.
Spectra obtained from these comets – P/2008 Y2(Gibbs) and 266/P Christensen – indicated that they were emitting a radio frequency that was consistent with the Wow! signal. As Antonio Paris (a professor at the CPS), described in a recent paper that appeared in the Journal of the Washington Academy of Sciences:
“The investigation discovered that comet 266/P Christensen emitted a radio signal at 1420.25 MHz. All radio emissions detected were within 1° (60 arcminutes) of the known celestial coordinates of the comet as it transited the neighborhood of the ‘Wow!’ Signal. During observations of the comet, a series of experiments determined that known celestial sources at 1420 MHz (i.e., pulsars and/or active galactic nuclei) were not within 15° of comet 266/P Christensen.”
The team also examined three other comets to see if they emitted similar radio signals. These comets – P/2013 EW90 (Tenagra), P/2016 J1-A (PANSTARRS), and 237P/LINEAR – were selected randomly from the JPL Small Bodies database, and were confirmed to emit a radio signal at 1420 MHz. Therefore, the results of this investigation conclude that the 1977 “Wow!” Signal was a natural phenomenon from a Solar System body.
However, not everyone is convinced. In response to the paper, Yvette Cendes – a PhD student with the Dunlap Institute at the University of Toronto – wrote a lengthy response on reddit as to why it fails to properly address the Wow! signal. For starters, she cites how the research team measured the signal strength in terms of decibels:
“I have never, ever, EVER used dB in a paper, nor have I ever read a paper in radio astronomy that measured signal strength in dB (except perhaps in the context of an instrumentation paper describing the systems of a radio telescope, i.e. not science but engineering.) We use a different unit in astronomy for flux density, the Jansky (Jy), where 1 Jy= ?230 dBm/(m2·Hz). (dB is a log scale, and Janskys are not.)”
Another point of criticism is the lack of detail in the paper, which would make reproducing the results very difficult – a central requirement where scientific research is concerned. Specifically, they do not indicate where the 10-meter radio telescope they used came from – i.e. which observatory of facility it belonged to, or even if it belonged to one at all – and are rather vague about its technical specification.
Last, but not least, there is the matter of the environment in which the observations took place, which are not specified. This is also very important for radio astronomy, as it raised the issue of interference. As Cendes put it:
“This might sound pedantic, but this is insanely important in radio astronomy, where most signals we ever search for are a tiny fraction of the man-made ones, which can be millions of times brighter than an astronomical signal. (A cell phone on the moon would be one of the brighter radio astronomy sources in the sky, to give you an idea!) Radio Frequency Interference (RFI) is super important for the field, so much that people can spend their careers on it (I’ve written a chapter on my thesis on this myself), and the “radio environment” of an observatory can be worth a paper in itself.”
Beyond these apparent incongruities, Cendes also states that the hypothesis for the experiment was flawed. Essentially, the Big Ear searched for the same signal for a period of 22 years, but found nothing. If the comet hypothesis held true, there should be an explanation as to why no trace of the signal was found until this time. Alas, one is lacking, as far as this most recent study is concerned.
“And now you likely have an idea on why one-off events are so hard to prove in science,” she claims. “But then, this is really the major reason the Wow! signal is unsolved to this day- without a plausible explanation, [without] additional data, we just will never know.”
Though it may be hard to accept, it is entirely possible that we may never know what the Wow! signal truly was – whether it was a one-off event, a naturally-occurring phenomena, or something else entirely. And if the comet hypothesis should prove to be unverifiable, then that is certainly good news for the SETI enthusiasts!
While the elimination of natural explanations doesn’t prove that things like Wow! signal are proof of alien civilizations, it at least indicates that this possibility cannot be ruled out just yet. And for those hopeful that evidence of intelligent life will be someday found, that’s really the best we can hope for… for now!
Summer is almost here, and for the northern hemisphere, that means warm nights for observing. But what to observe? We’re here with a list of events and targets for you to enjoy over the summer. Get your calendars handy, and start organizing some events with your friends, and then get out there!
We usually record Astronomy Cast as a live Google+ Hangout on Air every Friday at 1:30 pm Pacific / 4:30 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.
The Rosetta spacecraft learned a great deal during the two years that it spent monitoring Comet 67P/Churyumov-Gerasimenko – from August 6th, 2014 to September 30th, 2016. As the first spacecraft to orbit the nucleus of a comet, Rosetta was the first space probe to directly image the surface of a comet, and observed some fascinating things in the process.
For instance, the probe was able to document some remarkable changes that took place during the mission with its OSIRIS camera. According to a study published today (March. 21st) in Science, these included growing fractures, collapsing cliffs, rolling boulders and moving material on the comet’s surface that buried some features and exhumed others.
These changes were noticed by comparing images from before and after the comet reached perihelion on August 13th, 2015 – the closets point in its orbit around the Sun. Like all comets, it is during this point in 67P/Churyumov-Gerasimenko’s orbit that the surface experiences its highest levels of activity, since perihelion results in greater levels of surface heating, as well as increased tidal stresses.
Basically, as comets gets closer to the Sun, they experience a combination of in-situ weathering and erosion, sublimation of water-ice, and mechanical stresses arising from an increased spin rate. These processes can be either unique and transient, or they can place over longer periods of time.
“Monitoring the comet continuously as it traversed the inner Solar System gave us an unprecedented insight not only into how comets change when they travel close to the Sun, but also how fast these changes take place.”
For instance, in-situ weathering occurs all over the comet and is the result of heating and cooling cycles that happen on both a daily and a seasonal basis. In the case of 67P/Churyumov-Gerasimenko’s (6.44 Earth years), temperatures range from 180 K (-93 °C; -135 °F) to 230 K (-43 °C; -45 °F) during the course of its orbit. When the comet’s volatile ices warm, they cause consolidated material to weaken, which can cause fragmentation.
Combined with the heating of subsurface ices – which leads to outgassing – this process can result in the sudden collapse of cliff walls. As other photographic evidence that was recently released by the Rosetta science team can attest, this sort of process appears to have taken place in several locations across the comet’s surface.
Similarly, comets experience increased stress because their spin rates speed up as they gets closer to the Sun. This is believed to be what caused the 500 meter-long (1640 ft) fracture that has been observed in the Anuket region. Originally discovered in August of 2014, this fracture appeared to have grown by 30 meters (~100 ft) when it was observed again in December of 2014.
This same process is believed to be responsible for a new fracture that was identified from OSIRIS images taken in June 2016. This 150-300 meter-long (492 – 984 ft) fracture appears to have formed parallel to the original. In addition, photographs taken in February of 2015 and June of 2016 (shown above) revealed how a 4 meter-wide (13 ft) boulder that was sitting close to the fractures appeared to have moved by about 15 meters (49 ft).
Whether or not the two phenomena are related is unclear. But it is clear that something very similar appears to have taken place in the Khonsu region. In this section of the comet (which corresponds to one of its larger lobes), images taken between May of 2015 and June 2016 (shown below) revealed how a much larger boulder appeared to have moved even farther between the two time periods.
This boulder – which measures some 30 meters (98 ft) across and weighs an estimated 12,800 metric tonnes (~14,100 US tons) – moved a distance of about 140 meters (~460 ft). In this case, outgassing during perihelion is believed to be the culprit. On the one hand, it could have caused the surface material to erode beneath it (thus causing it to roll downslope) or by forcibly pushing it.
For some time, it has been known that comets undergo changes during the course of their orbits. Thanks to the Rosetta mission, scientists have been able to see these processes in action for the first time. Much like all space probes, vital information continues to be discovered long after the Rosetta mission officially came to an end. Who knows what else the probe managed to witness during its historic mission, and which we will be privy to?
In the 18th and 19th centuries, astronomers made some profound discoveries about asteroids and comets within our Solar System. From discerning the true nature of their orbits to detecting countless small objects in the Main Asteroid Belt, these discoveries would inform much of our modern understanding of these bodies.
A general rule about comets and asteroids is that whereas the former develop comas or tails as they undergo temperature changes, the latter do not. However, a recent discovery by an international group of researchers has presented another exception to this rule. After viewing a parent asteroid in the Main Belt that split into a pair, they noted that both fragments formed tails of their own.
The reason asteroids do not do behave like comets has a lot to do with where they are situated. Located predominantly in the Main Belt, these bodies have relatively circular orbits around the Sun and do not experience much in the way of temperature changes. As a result, they do not form tails (or halos), which are created when volatile compounds (i.e. nitrogen, hydrogen, carbon dioxide, methane, etc.) sublimate and form clouds of gas.
As astronomical phenomena go, asteroid pairs are quite common. They are created when an asteroid breaks in two, which can be the result of excess rotational speed, impact with another body, or because of the destabilization of binary systems (i.e. asteroid that orbit each other). Once this happens, these two bodies will orbit the Sun rather than being gravitational bound to each other, and progressively drift farther apart.
However, when monitoring the asteroid P/2016 J1, an international team from the Institute of Astrophysics in Andalusia (IAA-CSIC) noticed something interesting. Apparently, both fragments in the pair had become “activated” – that is to say, they had formed tails. As Fernando Moreno, a researcher at IAA-CSIC who led the project, said in an Institute press release:
“Both fragments are activated, i.e., they display dust structures similar to comets. This is the first time we observe an asteroid pair with simultaneous activity… In all likelihood, the dust emission is due to the sublimation of ice that was left exposed after the fragmentation.”
While this is not the first instance where asteroids proved to be an exception to the rule and began forming clouds of sublimated gas around them, this is the first time it was observed happening with an asteroid pair. And it seems that the formation of this tail was in response to the breakup, which is believed to have happened six years ago, during the previous orbit of the asteroid.
In 2016, the research team used the Great Telescope of the Canary Islands (GTC) on the island of La Palma and the Canada-France-Hawaii Telescope (CFHT) at Mauna Kea to confirm that the asteroid had formed a pair. Further analysis revealed that the asteroids were activated between the end of 2015 and the beginning of 2016, when they reached the closest point in their orbit with the Sun (perihelion).
This analysis also revealed that the fragmentation of the asteroid and the bout of activity were unrelated. In other words, the sublimation has happened since the breakup and was not the cause of it. Because of this, these objects are quite unique as far as Solar System bodies go.
Not only are they two more exceptions to the rule governing comets and asteroids (there are only about twenty known cases of asteroids forming tales), the timing of their breakup also means that they are the youngest asteroid pair in the Solar System to date. Not bad for a bunch of rocks!
The Hubble Space Telescope is a workhorse which, despite its advanced years, keeps on producing valuable scientific data. In addition to determining the rate at which the Universe is expanding, spotting very distant galaxies, and probing the early history of the Universe, it has also observed some truly interesting things happening in nearby star systems.
For example, Hubble recently spotted some unusual activity in HD 172555, a star system located about 95 light-years from Earth. Here, Hubble obtained spectral information that indicated the presence of comets that appeared to be falling into the star. This could prove useful to scientists who are looking to understand how comets behaved during the early history of the Solar System.
These findings were presented at the 229th Meeting of the American Astronomical Society (AAS), which has been taking place this past week in Grapevine, Texas. During the course of the presentation, Dr. Carol Grady of Eureka Scientific Inc. and NASA’s Goddard Space Flight Center, shared Hubble data that hinted at the presence of infalling comets, a finding which could bolster theories about what is known as “gravitational stirring”.
Basically, this theory states that the presence of a Jupiter-size planet in a star system will lead to comets being deflected by its massive gravity, thus sending them into the star. This phenomena is associated with younger stars, and is believed to have taken place in our own Solar System billions of years ago – which also led to number of comets being diverted towards Earth.
The detection of infalling comets in this system (and the way it bolsters the theory of gravitational stirring) is of imminence significant, since it is believed that it was this very mechanism that transported water to Earth when it was quite young. By observing how comets behave around young stars like HD 172555, which is estimated to be around 40 million years old, astronomers are able to see just how this mechanism could work.
“Seeing these sun-grazing comets in our solar system and in three extrasolar systems means that this activity may be common in young star systems. This activity at its peak represents a star’s active teenage years. Watching these events gives us insight into what probably went on in the early days of our solar system, when comets were pelting the inner solar system bodies, including Earth. In fact, these star-grazing comets may make life possible, because they carry water and other life-forming elements, such as carbon, to terrestrial planets.”
And while exocomets are far too small to be observed directly, the research team – which included members from the European Space Agency, the Kapteyn Institute, NASA Goddard Space Flight Center, and the University of Colorado – were able to discern their presence in 2015 using data obtained by Hubble’s Space Telescope Imaging Spectrograph (STIS) and the Cosmic Origins Spectrograph (COS).
Over the course of six days of observation, Hubble’s instruments detected silicon and carbon gas in the ultraviolet wavelength. The source of these gases also appeared to be moving at a speed of over 579,360 km (360,000 mph) across the face of the star. The only viable explanation for this was that they were spotting trails of gas as they evaporated from comets as they made their way across the system’s debris disk and closer to the star.
This is not the first time that exocomets have been seen transiting HD 172555. In 2004 and 2011, similar detections were made by the European Southern Observatory’s High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph. On those occasions, HARPS detected spectra that indicated the presence of calcium, which was seen as evidence that comet-like objects were falling into the star.
Dr. Grady and her team followed up on this by conducting their own spectral analysis of the system. By viewing HD 172555 and its debris disk in ultraviolet light, they were able to discern the presence of silicon and carbon. This was made easier thanks to the fact that HD 172555’s debris disk is viewed close to edge-on, which gives the telescope a clear view of any comet activity taking place within it.
Dr. Grady admits that there are still some uncertainties with their study. For instance, it is not entirely clear whether the objects they observed were comets or asteroids. Though the behavior is consistent with comets, more data on their particular compositions will be needed before they can be sure.
But in the meantime, it is compelling evidence for how comets behaved during the early history of the Solar System. And it may lend weight to the debate about how water originated on Earth, which is also central to determining how and where life may emerge in other parts of the Universe.
Establishing a sustained human presence somewhere other than Earth is a vital part of humanity’s future, no matter what. We know that Earth won’t last forever. We don’t know exactly which one of the many threats that Earth faces will ultimately extinguish life here, but life will be extinguished completely at some future point.
Colonizing moons or planets is one way to do it. But that’s really hard. We may make it to Mars before too long, but we don’t know how successful we’ll be at establishing a presence there. There are an awful lot of ‘ifs’ when it comes to Mars.
The only other option is space habitats. That makes sense; there’s much more space out there than there is surface area on planets and moons. And space habitats have been on the minds of thinkers, writers, and scientists for a long time.
Gerard K. O’Neill is probably the most well-known thinker when it comes to space habitats. In 1977 he published the seminal book on space habitats, called “The High Frontier: Human Colonies in Space.” O’Neill in his time popularized what is now called the “O’Neill Cylinder.”
The O’Neill Cylinder
The O’Neill Cylinder lay the groundwork for space habitat design. It consisted of two counter-rotating cylinders, one nested inside the other. The counter-rotation provided stability and gravity. The atmosphere would be controlled, and the habitat would be powered by solar, and perhaps fusion.
The McKendree Cylinder
Other designs from other people followed O’Neill’s. Notable among them is the McKendree Cylinder. The McKendree would be gargantuan compared to the O’Neill Cylinder. Thanks to carbon nanotubes, it would have more surface area than the United States. It was designed by NASA Engineer Tom McKendree and introduced in the year 2,000 at the NASA “Turning Goals into Reality Conference.”
There’ve been other ideas for massive, high-tech space habitats, including the Bernal Sphere and the Stanford Torus. All of these designs are typical of engineers and technologists. Lots of high-tech, lots of steel, lots of machinery. But the engineers and scientists behind those designs weren’t the only ones thinking about humans in space.
Carl Sagan was too. And he had a very different idea of what space habitats could be.
So Crazy It Just Might Work
But the craziest idea for space habitats has got to be Carl Sagan’s, from his 1985 book “Comet.”In “Comet” Sagan suggested that humans could seek refuge in, and even colonize, actual comets travelling through our Solar System. Using all the advanced technologies thought about in Sagan’s time—but which don’t exist yet—comets could be transformed into humanity’s salvation. His idea is a world apart from the high-tech, highly-engineered, gleaming habitat designs that most people think of when they think of space habitats.
I’m a fan of Sagan’s. Like many in my generation, I was influenced by his TV series Cosmos. I loved it and it’s stuck with me. His book “The Demon-Haunted World” taught us what scientific skepticism can be, and how useful it is.
Sagan’s is the most surprising—and perhaps bleakest—view of space habitats. Life inside comets sounds shocking, and maybe even foolish, but as Sagan explains, there is some reasoning behind the idea.
Remember that when Sagan wrote about this, thermonuclear war between the superpowers was a “thing,” and thinkers like Sagan felt a sense of imminent danger. That sense of foreboding may have contributed to his “comets-as-space-habitas” idea. Plus, he was just an innovative thinker.
Sagan’s thinking behind using comets as space habitats starts out something like this: if there are about a hundred thousand comets crossing Earth’s orbit, and another hundred trillion in the Oort Cloud, their combined surface area is roughly equal to about a hundred million Earths. And with advanced technology, Sagan proposed that these comets could be captured and colonized and sent on orbits and trajectories desirable to humans.
Comets are rich in minerals, water ice, and biological compounds. Or so it was thought at the time. That means raw material for manufacturing, water to drink and to supply oxygen, biological compounds for bio-engineering, and even the raw material for rocket fuel. Add a fusion reactor for power, and
comets could end up being the convenience stores of the Solar System.
Physicist Freeman Dyson, an innovative thinker himself, had something to add to Sagan’s comet idea. In “Comet,” Sagan tells of Dyson’s ideas around genetic engineering, and that one day we should be able to engineer forms of life that could thrive on comets, and meet some of our needs. Dyson talks about a giant, genetically engineered tree that could grow on a comet, planted in snow rich in organic chemicals. The tree would supply us with fresh oxygen.
This sounds extremely far-fetched: humans living inside comets travelling through space, with giant genetically engineered trees and fusion power plants. I try to remind myself that many things we take for granted now were once thought to be laughable. But even though parts of the comet-as-space-habitat idea sound fanciful—like the giant tree—there may be the seed of a practical idea here, with humans hitching rides on comets, molding them to our purposes, and extracting resources like minerals and fuel from them.
Sagan was an agile creative thinker. He’s clearly riffing when he outlines his ideas for life on comets. He’s like the John Coltrane of space science.
It seems doubtful that we would go to the trouble to turn comets into actual habitats. It’s probably more science fiction that science. But the future is unwritten, and given enough time, almost anything might be possible.
There’s a remote chance that inexplicable light variations in a star in the Northern Cross may be caused by the works of an alien civilization.
1,480 light years from Earth twinkles one of the greatest mysteries of recent times. There in the constellation Cygnus the Swan, you’ll find a dim, ordinary-looking point of light with an innocent sounding name — Tabby’s Star. Named for Louisiana State University astronomer Tabetha Boyajian, who was the lead author on a paper about its behavior, this star has so confounded astronomers with its unpredictable ups and downs in its brightness, they’ve gone to war on the object, drilling down on it with everything from the Hubble to the monster 393.7-inch (10-meter) Keck Telescope in Hawaii. Continue reading “The Search Is On For Alien Signals Around Tabby’s Star”
You can’t say they didn’t try, but the news is sad nonetheless. ESA announced the mission for the Philae lander – the first spacecraft to ever land on a comet — is officially over. The system that enables communications between the Rosetta spacecraft and Philae – which sitting in a shaded region on Comet 67P/Churyumov-Gerasimenko – is being switched off on July 27, 2016, at 09:00 UTC.
“It’s time for me to say goodbye,” Philae tweeted on Tuesday. “Tomorrow, the unit on @ESA_Rosetta for communication with me will be switched off forever…”
Philae has mostly been in hibernation after its dramatic touchdown (actually, three or maybe four touchdowns) on Nov. 12, 2014 when it separated from the orbiting Rosetta spacecraft, flew, landed, bounced and then repeated that process for more than two hours across the surface. The harpoons that were to anchor Philae to the surface failed to fire, and scientists estimated the lander may have bounced as high as 3.2 kilometers (2 miles) before becoming wedged in the shadows of a cliff on the odd-shaped comet. The solar-powered lander quickly ran out of power, just hours after landing. Philae’s final location has been plotted but never actually seen by Rosetta.
After months of silence, the team heard briefly from Philae on June 13, 2015, when it transmitted information on its power and computer subsystems. It then made seven intermittent contacts with Rosetta in the following weeks, with the last coming on July 9, but the communications were too short and unstable to transmit or receive any meaningful scientific or engineering data.
Since then, the Support System Processor Unit (ESS) on Rosetta was kept on in the unlikely chance that Philae would wake up and try to reestablish contact. The hope was that when the comet was closer to the Sun, it might receive enough light to power up.
But the reason for turning it off now is due to Rosetta’s own impending end of mission, coming on September 30, 2016 when it will make a controlled impact at the Ma’at region on the comet’s “head.” Emily Lakdawalla of The Planetary Society put together this annotated image of sites where Philae touched down and likely landed, and where Rosetta will end up:
The team decided to keep “Rosetta’s listening channel on until it is no longer possible due to power constraints as we move ever further from the Sun towards the end of the mission,” said Patrick Martin, ESA’s Rosetta mission manager.
Martin said that by the end of this week, the spacecraft will be about 520 million km from the Sun, and will start facing a significant loss of power – about 4W per day. In order to continue scientific operations over the next two months and to maximize their return, it became necessary to start reducing the power consumed by the non-essential payload components on board.
But, Martin added that the mission of Philae and Rosetta will always be remembered as an incredible success.
“The combined achievements of Rosetta and Philae, rendezvousing with and landing on a comet, are historic high points in space exploration,” he said.
Philae did achieve 80% of its primary science goals in its short 64-hour active mission, as it took detailed images of the comet from above and on the surface, searched for organic compounds, and profiled the local environment and surface properties of the comet, “providing revolutionary insights into this fascinating world,” ESA said.