NASA is Sending a Vacuum Cleaner to the Moon

The Lunar Planet Vac, or LPV, is one of 10 payloads set to be carried to the Moon by the Blue Ghost 1 lunar lander in 2025. Credit: Firefly Aerospace

By the end of this decade, NASA, the Chinese National Space Agency (CNSA), Roscosmos, and other space agencies plan to establish a sustained human presence on the Moon. A crucial aspect of these plans is using local resources (particularly water) to lessen dependence on Earth, a process known as in-situ resource utilization (ISRU). Hence why NASA plans to establish a base of operations around the lunar south pole, a heavily cratered region where water ice exists in abundance in permanently shadowed regions (PSRs).

To harvest water ice and other resources successfully, NASA is investing in technologies that will enable cost-effective sample collection, in-situ testing (with or without astronaut oversight), and real-time data transmission to Earth. One such technology is the Lunar PlanetVac (LPV), a sample acquisition and delivery system designed to collect and transfer lunar regolith to sample containers without reliance on gravity. The LPV is one of 10 payloads that will be flown to the lunar surface as part of NASA’s Commercial Lunar Payload Services (CLPS) program.

Continue reading “NASA is Sending a Vacuum Cleaner to the Moon”

Studying Stars from the Lunar Surface with MoonLITE, Courtesy of NASA’s Commercial Lunar Payload Services

Diagram conveying the setup for MoonLITE on the lunar surface, beginning with a lander being delivered by NASA’s Commercial Lunar Payload Services (1), which unrolls a fiber umbilical over 100 meters (328 feet) (2), concluding with deploying the siderostat station (3). Science operations begin once instrument calibration is performed. (Credit: van Belle et al. (2024))

Optical interferometry has been a long-proven science method that involves using several separate telescopes to act as one big telescope, thus achieving more accurate data as opposed to each telescope working individually. However, the Earth’s chaotic atmosphere often makes achieving ground-based science difficult, but what if we could do it on the Moon? This is what a recent study presented at the SPIE Astronomical Telescopes + Instrumentation 2024 hopes to address as a team of researchers propose MoonLITE (Lunar InTerferometry Explorer) as part of the NASA Astrophysics Pioneers program. This also comes after this same team of researchers recently proposed the Big Fringe Telescope (BFT), which is a 2.2-kilometer interferometer telescope to be built on the Earth with the goal of observing bright stars.

Continue reading “Studying Stars from the Lunar Surface with MoonLITE, Courtesy of NASA’s Commercial Lunar Payload Services”

Europe is Sending a Drill to the Moon to Search for Water

ESA's Prospect package, including drill and a miniaturised laboratory, will fly to the Moon’s South Polar region in search of volatiles, including water ice, as part of NASA’s Commercial Lunar Payload Services initiative.

The Moon has been a source of interest of late largely due to the focus on getting humans back to the Moon. Future human explorers though will likely be there to stay in permanent lunar bases. Making this a reality means it is of vital importance to harvest materials from the Moon and water is just one of them. Recently, ESA Announced they have secured a ride to the Moon for their Prospect package in 2027. It consists of a drill and tiny laboratory that will hunt for water and other volatiles, paving the way for human exploration.

Continue reading “Europe is Sending a Drill to the Moon to Search for Water”

NASA's Skyrocketing Need for Cargo Deliveries to the Moon

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA

NASA has big plans for the Moon. Through the Artemis Program, NASA plans to create a program of “sustained exploration and lunar development.” This will include the creation of the Lunar Gateway, an orbital habitat that will facilitate missions to and from the surface, and the Artemis Base Camp that will allow for extended stays. Through its Commercial Lunar Payload Services (CLPS) program, NASA has contracted with commercial partners like SpaceX and Blue Origin to deliver scientific experiments and crew to the lunar surface.

However, these efforts are expected to culminate in the creation of a permanent outpost and human presence on the Moon. This will require far more in the way of crew and payload services to ensure crews can be sustained in the long run. In a recent white paper, “Lunar Surface Cargo,” NASA researchers identified a significant gap between current cargo delivery capabilities and future demand. The paper indicates that this growing cargo demand can only be met by creating a “mixed cargo lander fleet.”

Continue reading “NASA's Skyrocketing Need for Cargo Deliveries to the Moon”

Lunar Night Permanently Ends the Odysseus Mission

Image of Odysseus moon landing
This image shows one of the Odysseus lander's legs breaking due to the shock of first contact on the moon. (Credit: Intuitive Machines)

On February 15th, Intuitive Machines (IM) launched its first Nova-C class spacecraft from Kennedy Space Center in Florida atop a SpaceX Falcon 9 rocket. On February 22nd, the spacecraft – codenamed Odysseus (or “Odie”) – became the first American-built vehicle to soft-land on the lunar surface since the Apollo 17 mission in 1972. While the landing was a bit bumpy (Odysseus fell on its side), the IM-1 mission successfully demonstrated technologies and systems that will assist NASA in establishing a “sustained program of lunar exploration and development.”

After seven days of operation on the lunar surface, Intuitive Machines announced on February 29th that the mission had ended with the onset of lunar night. While the lander was not intended to remain operational during the lunar night, flight controllers at Houston set Odysseus into a configuration that would “call home” if it made it through the two weeks of darkness. As of March 23rd, the company announced that their flight controllers’ predictions were correct and that Odie would not be making any more calls home.

Continue reading “Lunar Night Permanently Ends the Odysseus Mission”

Masten Space is Building a Lunar Lander for NASA. Also, They Just Filed for Bankruptcy

Artist's rendering of the Masten XL-1 lander. Credit: Masten Space Systems

If you’re a fan of the commercial space industry (aka. NewSpace), then the name Masten Space Systems is sure to ring a bell. For years, this California-based aerospace company has been developing delivery systems to accommodate payloads to the Moon, Mars, and beyond. This included Xoie, the lander concept that won the $1 million Northrop Grumman Lunar X-Prize in 2009, their Xombie and Xodiac reusable terrestrial landers, and the in-Flight Alumina Spray Technique (FAST) that would allow lunar landers to create their own landing pads.

But perhaps their biggest feat was the Xelene Lunar Lander (XL-1) that they developed in partnership with the NASA Lunar CATALYST program. This lander was one of several robotic systems enlisted by NASA to deliver cargo to the Moon in support of the Artemis Program. This included the Masten-1 mission, which was scheduled to land a payload Moon’s southern polar region in 2023. The company was scheduled to make a second delivery (Masten-2) by 2024, one year before the first Artemis astronauts arrived. But according to a statement issued on July 28th, the company has filed for Chapter 11 and is bankrupt!

Continue reading “Masten Space is Building a Lunar Lander for NASA. Also, They Just Filed for Bankruptcy”

NASA is Planning to Build a Lunar Rover With a 1-Meter Drill to Search for Water Ice

An illustration of NASA's VIPER lunar rover. It'll explore the Moon's south pole and map water resources. Image Credit: NASA Ames/Daniel Rutter

Meet VIPER, NASA’s new lunar rover, equipped with a drill to probe the Moon’s surface and look for water ice. VIPER, or Volatiles Investigating Polar Exploration Rover, will carry a one-meter drill and will use it to map out water resources at the Moon’s south pole. It’s scheduled to be on the lunar surface by December 2023, one year later than it’s initial date.

Continue reading “NASA is Planning to Build a Lunar Rover With a 1-Meter Drill to Search for Water Ice”