SpaceX Dragon Splashes Down in Pacific with Treasure Trove of Space Station Science

The SpaceX Dragon CRS-10 spacecraft is pictured seconds before splashing down in the Pacific Ocean on Mar. 19, 2017 after departing the International Space Station (ISS). Credit: SpaceX
The SpaceX Dragon CRS-10 spacecraft is pictured seconds before splashing down in the Pacific Ocean on Mar. 19, 2017 after departing the International Space Station (ISS). Credit: SpaceX

KENNEDY SPACE CENTER, FL – SpaceX’s tenth contracted resupply mission to the International Space Station came to a safe conclusion with a splashdown of the Dragon spacecraft in the Pacific Ocean Sunday and successfully returned a treasure trove of more than two tons of precious science experiments and research samples from the space station.

Researchers on Earth are eagerly awaiting the science data and samples in order to carry out high powered laboratory analysis that will eventually yield the fruits of the hard won labor – years in the making.

The Dragon CRS-10 cargo freighter departed the International Space Station (ISS) Sunday morning after Expedition 50 astronauts Thomas Pesquet of ESA (European Space Agency) and Shane Kimbrough of NASA released the spacecraft from the grip of the station’s 57.7-foot-long(17.6-meter) Canadian-built Canadarm2 robotic arm as planned at 5:11 a.m. EDT, March 19.

After carefully maneuvering away from the orbiting outpost and six person international crew at an altitude of appox. 250 miles (400 km), Dragon eased away to a safe distance.

SpaceX’s Dragon CRS-10 cargo vehicle is attached to the International Space Station on Feb 23, 2017 after early morning capture by astronauts Shane Kimbrough and Thomas Pesquet using the robotic arm and subsequent berthing at Earth facing port on the Harmony module. It will stay for a month. Credit: NASA

The vessel then fired its braking thrusters a few hours later to initiate the reentry burn that would set the craft on course for a fiery plummet through the Earth’s atmosphere.

Some five and a half hours later the spaceship carried out a parachute assisted splashdown in the Pacific Ocean at 10:46 a.m. EDT, about 200 miles southwest of Long Beach, California.

The highest priority research and technology cargo will be removed from Dragon immediately and returned to NASA.

SpaceX CRS-10 Dragon supply ship launched on Feb. 19, 2017 from NASA’s Kennedy Space Center in Florida successfully arrives at the International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

The rest will travel back to port and be prepared for a return trip to SpaceX’s test facility in McGregor, Texas, where the remaining scientific samples, research experiments and technology gear and hardware will be unloaded for NASA.

Dragon had spent nearly a month berthed at the Earth-facing port on the station’s Harmony module, since arriving on Feb 23.

Dragon begun its space voyage after it was launched from the Kennedy Space Center (KSC) on Sunday, Feb. 19 on the first Falcon 9 rocket ever to blast off from historic launch pad 39A in a blaze of glory – as I reported here.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

At liftoff, the Dragon CRS-10 space freighter was carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload to the low Earth orbiting station in support of the Expedition 50 and 51 crew members.

After a four day chase, Dragon was captured and attached to the station using the Canadian arm on Feb 23 by the same two astronauts who released it on Sunday.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere. It is one of NASA’s longest running earth science programs.

The LIS lightning mapper will measure the amount, rate and energy of lightning as it strikes around the world from the altitude of the ISS as it orbits Earth. Its data will complement that from the recently orbited GLM lighting mapper lofted to geosynchronous aboard the NASA/NOAA GOES-R spacecraft instrument.

NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

SAGE III and RAVEN were stowed in the Dragon’s unpressurized truck. Astronauts plucked them out of the trunk using the robotic arm and attached them to specified locations on the stations exterior to carry out their objectives.

For the return trip to Earth, the astronaut crew loaded Dragon with more than 5,400 pounds of NASA cargo, and science and technology demonstration samples gathered and collected by the stations crewmembers.

“A variety of technological and biological studies are returning in Dragon. The Microgravity Expanded Stem Cells investigation had crew members observe cell growth and other characteristics in microgravity,” said NASA.

“This information will provide insight into how human cancers start and spread, which aids in the development of prevention and treatment plans. Results from this investigation could lead to the treatment of disease and injury in space, as well as provide a way to improve stem cell production for human therapy on Earth.”

“Samples from the Tissue Regeneration-Bone Defect study, a U.S. National Laboratory investigation sponsored by the Center for the Advancement of Science in Space (CASIS) and the U.S. Army Medical Research and Materiel Command, studied what prevents vertebrates such as rodents and humans from re-growing lost bone and tissue, and how microgravity conditions affect the process. Results will provide a new understanding of the biological reasons behind a human’s inability to grow a lost limb at the wound site, and could lead to new treatment options for the more than 30 percent of the patient population who do not respond to current options for chronic non-healing wounds.”

Dragon departed in order to make way for the arrival of the next cargo ship.

The ‘SS John Glenn’ Cygnus cargo freighter built by Orbital Sciences is due to lift off no earlier than March 27 on a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral Air Force Station.

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Watch for Ken’s onsite launch and mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

March Launch Madness: Triple Headed Space Spectacular Starts Overnight with SpaceX March 14 – Watch Live

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – It’s March Madness for Space fans worldwide! A triple header of space spectaculars starts overnight with a SpaceX Falcon 9 launching in the wee hours of Tuesday, March 14 from the Florida Space Coast.

Indeed a trio of launches is planned in the next week as launch competitor and arch rival United Launch Alliance (ULA) plans a duo of nighttime blastoffs from their Delta and Atlas rocket families – following closely on the heels of the SpaceX Falcon 9 launching a commercial telecommunications satellite.

Of course it’s all dependent on everything happening like clockwork!

And there is no guarantee of that given the unpredictable nature of the fast changing weather on the Florida Space Coast and unknown encounters with technical gremlins which have already plagued all 3 rockets this month.

Each liftoff has already been postponed by several days this month. And the rocket launch order has swapped positions.

At any rate, SpaceX is now the first on tap after midnight tonight on Tuesday, March 14.

The Delta IV and Atlas V will follow on March 17 and March 21 respectively – if all goes well.

So to paraphrase moon walker Buzz Aldrin;

‘Get Your Ass to the Florida Space Coast – Fast !’

The potential for a grand slam also exists at the very end of the month. But let’s get through at least the first launch of Falcon first.

SpaceX Falcon 9 rocket stands at launch pad 39a poised to liftoff with EchoStar 23 TV sat on the Kennedy Space Center ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Julian Leek

Liftoff of the two stage SpaceX Falcon 9 carrying the EchoStar 23 telecommunications satellite is now slated for a post midnight spectacle next Tuesday, Mar. 14 from launch pad 39A on the Kennedy Space Center at the opening of the launch window at 1:34 a.m. EDT.

The two and a half hour launch window closes at 4:04 a.m. EDT.

You can watch the launch live on a SpaceX dedicated webcast starting about 20 minutes prior to the 1:34 a.m. liftoff time.

The SpaceX webcast will be available starting at about 20 minutes before liftoff, at approximately 1:14 a.m. EDT.

Watch at: SpaceX.com/webcast

SpaceX Falcon 9 rocket carrying EchoStar 23 telecomsat raised erect atop Launch Complex 39A at the Kennedy Space Center as seen from inside the pad on March 13, 2017 ahead of liftoff slated for 14 Mar 2017 at 1:34 a.m. Credit: Ken Kremer/Kenkremer.com

Following a successful static fire test last week on Mar. 9 of the first stage boosters engines, the SpaceX Falcon 9 was integrated with the EchoStar 23 direct to home TV satellite and rolled back out to pad 39A

The Falcon 9 rocket was raised erect into launch position by the time I visited the pad this afternoon, Monday March 13, to set up my cameras.

The weather outlook is not great at this moment, with rain and thick clouds smothering the coastline and central Florida.

The planned Mar. 14 launch comes barely three weeks after the Falcon’s successful debut on Feb. 19 on the NASA contracted Dragon CRS-10 mission that delivered over 2.5 tons of cargo to the six person crew living and working aboard the International Space Station (ISS).

Raindrops keep falling on the lens, as inaugural SpaceX Falcon 9/Dragon disappears into the low hanging rain clouds at NASA’s Kennedy Space Center after liftoff from pad 39A on Feb. 19, 2017. Dragon CRS-10 resupply mission is delivering over 5000 pounds of science and supplies to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Launch Complex 39A was repurposed by SpaceX from launching Shuttles to Falcons. It had lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

SpaceX bilionaire CEO Elon Musk announced last week that he wants to launch a manned Moonshot from pad 39A by the end of next year using his triple barreled Falcon Heavy heavy lift rocket – derived from the Falcon 9.

The second launch of the trio on tap is a United Launch Alliance Delta 4 rocket carrying the WGS-9 high speed military communications satellite for the U.S. Air Force.

Liftoff of the ULA Delta is slated for March 17 from Space Launch Complex-37 at 7: 44 p.m. EDT.

A United Launch Alliance (ULA) Delta IV rocket carrying the WGS-8 mission lifts off from Space Launch Complex-37 at 6:53 p.m EDT on Dec. 7, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

The S.S. John Glenn is scheduled to as the Orbital ATK Cygnus OA-7 spacecraft for NASA on a United Launch Alliance (ULA) Atlas V rocket launch no earlier than March 21 from Space launch Complex-41 (SLC-41) on Cape Canaveral Air Force Station, Florida.

Orbital ATK Cygnus OA-7 spacecraft named the SS John Glenn for Original 7 Mercury astronaut and Sen. John Glenn, undergoes processing inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on March 9, 2017 for launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 EchoStar 23 mission patch. Credit: SpaceX

………….

Learn more about SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 13-15: “SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX conducts successful static hot fire test of Falcon 9 booster atop Launch Complex 39A at the Kennedy Space Center on Mar 9, 2017 as seen from Space View Park, Titusville, FL. Liftoff with EchoStar 23 comsat is planned for 14 March 2017. Credit: Ken Kremer/Kenkremer.com

Next Cygnus Cargo Ship Christened the SS John Glenn to Honor First American in Orbit

The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA's original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. It launched on April 18, 2017 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com
The Orbital ATK Cygnus spacecraft named for Sen. John Glenn, one of NASA’s original seven astronauts, stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida behind a sign commemorating Glenn on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – The next Cygnus cargo ship launching to the International Space Station (ISS) has been christened the ‘S.S. John Glenn’ to honor legendary NASA astronaut John Glenn – the first American to orbit the Earth back in February 1962.

John Glenn was selected as one of NASA’s original seven Mercury astronauts chosen at the dawn of the space age in 1959. He recently passed away on December 8, 2016 at age 95.

The naming announcement was made by spacecraft builder Orbital ATK during a ceremony with the ‘S.S. John Glenn’, held inside the Kennedy Space Center (KSC) clean room facility where the cargo freighter is in the final stages of flight processing – and attended by media including Universe Today on Thursday, March 9.

“It is my humble duty and our great honor to name this spacecraft the S.S. John Glenn,” said Frank DeMauro, vice president and general manager of Orbital ATK’s Advanced Programs division, during the clean room ceremony in the inside the Payload Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center in Florida.

The next Orbital ATK Cygnus supply ship was christened the SS John Glenn in honor of Sen. John Glenn, one of NASA’s original seven astronauts as it stands inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

The S.S. John Glenn is scheduled to liftoff as the Orbital ATK Cygnus OA-7 spacecraft for NASA on a United Launch Alliance (ULA) Atlas V rocket launch no earlier than March 21 from Space launch Complex-41 (SLC-41) on Cape Canaveral Air Force Station, Florida.

The space station resupply mission dubbed Cygnus OA-7 is dedicated to Glenn and his landmark achievement as the first American to orbit the Earth on Feb. 20, 1962 and his life promoting science, human spaceflight and education.

“John Glenn was probably responsible for more students studying math and science and being interested in space than anyone,” said former astronaut Brian Duffy, Orbital ATK’s vice president of Exploration Systems, during the clean room ceremony on March 9.

“When he flew into space in 1962, there was not a child then who didn’t know his name. He’s the one that opened up space for all of us.”

The Orbital ATK Cygnus OA-7 supply ship named in honor of Sen. John Glenn, one of NASA’s original seven astronauts stands inside the Payload Hazardous Servicing Facility at KSC. Launch slated for March 21 on a ULA Atlas V. Credit: Julian Leek

Glenn’s 3 orbit mission played a pivotal role in the space race with the Soviet Union at the height of the Cold War era.

“He has paved the way for so many people to follow in his footsteps,” said DeMauro.

All of Orbital ATK’s Cygnus freighters have been named after deceased American astronauts.

Glenn is probably America’s most famous astronaut in addition to Neil Armstrong, the first man to walk on the moon during Apollo 11 in 1969.

John Glenn went on to become a distinguished U.S. Senator from his home state of Ohio on 1974. He served for 24 years during 4 terms.

He later flew a second mission to space aboard the Space Shuttle Discovery in 1998 as part of the STS-95 crew at age 77. Glenn remains the oldest person ever to fly in space.

“Glenn paved the way for America’s space program, from moon missions, to the space shuttle and the International Space Station. His commitment to America’s human space flight program and his distinguished military and political career make him an ideal honoree for the OA-7 mission,” Orbital ATK said in a statement.

Orbital ATK Cygnus OA-7 spacecraft named the SS John Glenn for Original 7 Mercury astronaut and Sen. John Glenn, undergoes processing inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida on March 9, 2017 for launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

“The OA-7 mission is using the Enhanced Cygnus Pressurized Cargo Module (PCM) to deliver cargo to the International Space Station,” said DeMauro.

Cygnus will carry 7,700 pounds (3500 kg) of cargo to the station with a total volumetric capacity of 27 cubic meters.

“All these teams have worked extremely hard to get this mission to this point and we are looking forward to a great launch.”

Orbital ATK Cygnus OA-7 supply ship named the SS John Glenn undergoes processing inside the Payload Hazardous Servicing Facility at KSC on March 9, 2017. Launch slated for March 21 on a ULA Atlas V. Credit: Ken Kremer/Kenkremer.com

This is the third Cygnus to launch on an Atlas V rocket from the Cape. The last one launched a year ago on March 24, 2016 during the OA-6 mission. The first one launched in December 2015 during the OA-4 mission.

“We’re building the bridge to history with these missions,” said Vernon Thorp, ULA’s program manager for Commercial Missions.

“Every mission is fantastic and every mission is unique. At the end of the day every one of these missions is critical.”

The Orbital ATK Cygnus OA-7 supply ship named in honor of Sen. John Glenn, one of NASA’s original seven astronauts stands inside the Payload Hazardous Servicing Facility at KSC. Launch slated for March 21 on a ULA Atlas V. Credit: Julian Leek

The other Cygnus spacecraft have launched on the Orbital ATK commercial Antares rocket from NASA Wallops Flight Facility on Virginia’s eastern shore.

A United Launch Alliance (ULA) Atlas V rocket carrying the Orbital ATK Cygnus OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

Overall this is Orbital ATK’s seventh commercial resupply services mission (CRS) to the space station under contract to NASA.

OA-7 also counts as NASA’s second supply mission of the year to the station following last month’s launch of the SpaceX Dragon CRS-10 capsule on Feb. 19 and which is currently berthed to the station at a Earth facing port on the Harmony module.

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

The Cygnus OA-8 mission will launch again from NASA Wallops in the summer of 2017, DeMauro told me.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Posing with the newly christened SS John Glenn for the Cygnus OA-7 resupply mission to the ISS are Vern Thorp, United Launch Alliance Program program manager for Commercial Missions, Ken Kremer, Universe Today and Frank DeMauro, Orbital ATK vice president and general manager of Orbital ATK’s Advanced Programs division inside the Payload Hazardous Servicing Facility cleanroom at NASA’s Kennedy Space Center on March 9, 2017. Credit: Ken Kremer/Kenkremer.com

………….

Learn more about SpaceX EchoStar 23 and CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Mar 13-15: “SpaceX EchoStar 23, CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Dragon Arrives at Space Station with Tons of Earth and Human Science Experiments

SpaceX’s Dragon CRS-10 cargo vehicle is attached to the International Space Station on Feb 23, 2017 after early morning capture by astronauts Shane Kimbrough and Thomas Pesquet using the robotic arm and subsequent berthing at Earth facing port on the Harmony module. It will stay for a month. Credit: NASA
SpaceX’s Dragon CRS-10 cargo vehicle is attached to the International Space Station on Feb 23, 2017 after early morning capture by astronauts Shane Kimbrough and Thomas Pesquet using the robotic arm and subsequent berthing at Earth facing port on the Harmony module. It will stay for a month. Credit: NASA

KENNEDY SPACE CENTER, FL – A SpaceX Dragon supply ship jam packed with more than 2.5 tons of critical science gear, crew supplies and 40 mice successfully arrived this morning at the International Space Station (ISS) – where six humans from the US, Russia and France are living and working aboard.

Dragon reached the station four days after it was launched from the Kennedy Space Center (KSC) on Sunday, Feb. 19 on the first Falcon 9 rocket ever to blast off from historic launch pad 39A in a blaze of glory.

Astronauts Thomas Pesquet of ESA (European Space Agency) and station commander Shane Kimbrough of NASA deftly maneuvered the space station’s 57.7-foot (17.6-meter) Canadian-built Canadarm2 robotic arm to reach out and flawlessly capture the Dragon CRS-10 spacecraft at about 5:44 a.m. EST early Thursday, after it arrived at the station.

The SpaceX CRS-10 Dragon is pictured in the grips of the Canadarm2 shortly after its capture by astronauts Shane Kimbrough and Thomas Pesquet on Feb. 23, 2017. Credit: NASA TV

Pesquet and Kimbrough were working at the robotics work station inside the seven windowed Cupola module as they monitored Dragon’s approach for capture by the grappling snares on the terminus of the robotic arm this morning as the station was soaring over the northwest coast of Australia.

“Looks like we have a great Dragon capture,” said capcom astronaut Mike Hopkins.

“We want to congratulate all the teams working around the world for the successful arrival,” said Pesquet.

The million pound station is orbiting approximately 250 miles (400 km) above Earth.

SpaceX CRS-10 Dragon supply ship launched on Feb. 19, 2017 from NASA’s Kennedy Space Center in Florida successfully arrives at the International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

The commercial Dragon cargo freighter arrived about 16 minutes earlier than originally planned.

The duo were assisted by experienced NASA astronaut Peggy Whitson. The 57 year old Whitson will soon set a record for most time spent in space by an American on April 24.

The gumdrop shaped Dragon cargo freighter slowly and methodically approached the station and the capture point through the required approach corridor during the final stages of the orbital chase.

After hovering at the capture point in free drift at a distance of about 34 feet (11 m) from the orbiting outpost, the crew members extended the robotic arm and Dragon was successfully plucked from free space using Canardarm2 at the grapple fixture located on the side of the supply ship.

The entire thrilling approach and grappling sequence was broadcast live on NASA TV.

SpaceX Dragon arrives at the 30 meter hold point during final approach to International Space Station on Feb. 23, 2017 for capture and berthing at station port on the Harmony module. Credit: NASA

Robotics officers on the ground at the NASA’s Johnson Space Center then took over and berthed Dragon to the Earth facing port on the Harmony module at about 8 a.m. as the mated craft were soaring over central America.

16 latches and bolts on the stations Common Berthing Mechanism (CBM) will hold Dragon firmly in place for a hard mate to the stations Harmony module.

4 gangs of 4 bolts were driven into place with ground commands from the robotics officer to firmly bolt Dragon to the nadir port on Harmony.

The second stage capture and Dragon installation was confrmed at 8:12 a.m. Feb 23 as the craft were flying over the US East Coast.

“Today’s’ re-rendezvous has gone by the book,” said NASA commentator Rob Navias.

“Dragon systems are in excellent shape.”

“There have been no issues and everything has gone as planned.”

“Today was smooth sailing as Dragon arrived below the space station and maneuvered its way through a carefully choreographed procedure to the grapple position for rendezvous and capture.”

“Dragon is now firmly attached to the International Space Station and the crew will begin unloading critical science payloads and supplies this afternoon.”

“Today’s’ re-rendezvous has gone by the book,” said NASA commentator Rob Navias.

“Dragon systems are in excellent shape.”

“There have been no issues and everything has gone as planned.”

Yesterday’s rendezvous was automatically aborted when a bad bit of navigational data was uplinked to Dragons relative GPS navigation system as it was about 0.7 miles below the station.

“The Dragon’s computers received an incorrect navigational update, triggering an automatic wave off. Dragon was sent on a “racetrack” trajectory in front of, above and behind the station for today’s second rendezvous attempt.”

There was never any danger to the crew, space station or Dragon. It merely arrived a day later than planned as it is fully equipped to do if needed.

The SpaceX Dragon was successfully installed to the Harmony module a few hours after it was captured with the Canadarm2 by the crew on Feb 23, 2017. This artists concept shows the location of several visiting vehicles including Dragon, Soyuz and BEAM expandable module. Credit: NASA

CRS-10 counts as the company’s tenth scheduled flight to deliver supplies, science experiments and technology demonstrations to the International Space Station (ISS).

The Dragon is the first of two cargo craft arriving at the station over two consecutive days.

The unpiloted Russian Progress 66 supply ship launched yesterday from Baikonur is slated to arrive early Friday morning with 2.9 tons of supplies. It will automatically dock at the Pirs docking module at about 3:45 a.m., with a trio of Russian cosmonauts monitoring all the action.

After conducting leak checks, the crew plans to open the hatch to Dragon later today.

They will quickly begin removing the highest priority science investigations and gear first.

Dragon will remain at the station for about 30 days.

SpaceX Falcon 9 rocket and Dragon cargo ship rests horizontal atop Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 as work crews use the access room to load ‘late stow’ science experiments aboard Dragon – as seen from inside the pad perimeter. This is the first rocket launched from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission occurred on 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

1000 pounds of ‘late stow’ experiments were loaded the day before the originally planned Feb. 18 liftoff of the SpaceX Falcon 9 rocket.

Dragon was successfully launched from NASA’s Kennedy Space Center atop the 213-foot-tall (65-meter) SpaceX Falcon 9 rocket at 9:38 a.m. EST on Feb. 19, 2017 from historic Launch Complex 39A to low Earth orbit.

Raindrops keep falling on the lens, as inaugural SpaceX Falcon 9/Dragon disappears into the low hanging rain clouds at NASA’s Kennedy Space Center after liftoff from pad 39A on Feb. 19, 2017. Dragon CRS-10 resupply mission is delivering over 5000 pounds of science and supplies to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Dragon is carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload in support of the Expedition 50 and 51 crew members.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere. It is one of NASA’s longest running earth science programs.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

The LIS lightning mapper will measure the amount, rate and energy of lightning as it strikes around the world from the altitude of the ISS as it orbits Earth. Its data will complement that from the recently orbited GLM lighting mapper lofted to geosynchronous aboard the NASA/NOAA GOES-R spacecraft instrument.

NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

SAGE III and RAVEN were stowed in the Dragon’s unpressurized truck.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

The 40 mice will be used in a wound healing experiment to test therapies in microgravity.

An advanced plant growth habitat will launch soon to test better technologies for growing crops in space that could contribute to astronauts nutrition on long duration spaceflights.

SpaceX Dragon CRS-10 Cargo manifest from NASA:

TOTAL CARGO: 5489.5 lbs. / 2490 kg

TOTAL PRESSURIZED CARGO WITH PACKAGING: 3373.1 lbs. / 1530 kg

• Science Investigations 1613.8 lbs. / 732 kg
• Crew Supplies 652.6 lbs. / 296 kg
• Vehicle Hardware 842.2 lbs. / 382 kg
• Spacewalk Equipment 22.0 lbs. / 10 kg
• Computer Resources 24.2 lbs. / 11 kg
• Russian Hardware 48.5 lbs. / 22 kg

UNPRESSURIZED

• SAGE-III & STP-H5 Lightning Imaging Sensor 2116.4 lbs. / 960 kg

Historic maiden blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 9:38 a.m. EDT on Feb 19, 2017, on Dragon CRS-10 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 Goes Vertical with Station Science at KSC Pad 39A – Watch Live Feb. 19

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39A at the Kennedy Space Center on 18 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – Just hours before blastoff, the first ever SpaceX Falcon 9 set to soar to the space station from historic pad 39A at NASA’s Kennedy Space Center (KSC), the rocket went vertical below delightfully dark skies on the Florida Space Coast.

UPDATE- The launch was scrubbed until Feb. 19 after a hold was called to deal with a thrust vector control issue. Story updated

Packed with over a thousand pounds of research experiments and science instruments probing the human body and our home planet from the heavens above, the Falcon 9 rocket is poised for liftoff at 9:38 a.m., Sunday morning, Feb. 19, from Launch Complex 39A (LC-39A) at KSC.

Everything is on track for Sunday’s launch of the 229 foot tall (70 meter) SpaceX Falcon 9 on the NASA contracted SpaceX CRS-10 resupply mission for NASA to the million pound orbiting lab complex.

And the weather looks promising at this time.

At a meeting with reporters at pad 39A on Friday, Feb. 17, SpaceX President Gwynne Shotwell confirmed the success of the static fire test of the two stage rocket and all nine first stage Merlin 1D engines conducted on Sunday afternoon, Feb. 12 – minus the SpaceX Dragon cargo freighter payload.

SpaceX Falcon 9 rocket rests horizontal atop Launch Complex 39-A at the Kennedy Space Center on 17 Feb 2017 as seen from inside the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb 2017. Credit: Ken Kremer/Kenkremer.com

The successful test firing of the engines cleared the path to orbit for liftoff of Dragon on a critical cargo flight for NASA to deliver over two and a half tons of supplies and science on the CRS-10 resupply mission to the six person crew living and working aboard the International Space Station (ISS).

Shotwell then said technicians integrated with the unmanned Dragon CRS-10 cargo freighter with the Falcon 9 rocket.

SpaceX President Gwynne Shotwell meets the media at Launch Complex 39A at the Kennedy Space Center on 17 Feb 2017 ahead of launch of the CRS-10 mission on 19 Feb 2017. Credit: Julian Leek

The 22 story tall rocket rolled out of the SpaceX processing hangar at the perimeter fence and then up the incline to the top of pad 39A on Thursday morning using a dedicated transporter-erector, so ground crews could begin final preparations for the Saturday morning blastoff. Now reset to Sunday.

SpaceX Falcon 9 rocket goes vertical at night atop Launch Complex 39-A at the Kennedy Space Center on 19 Feb 2017 as seen after midnight from the pad perimeter. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 18 Feb 2017. Credit: Ken Kremer/Kenkremer.com

Thousands and thousands of spectators from across the globe, local residents, media and scientists and engineers and their families have flocked to the Florida Space Coast, filling area hotels to witness the historic maiden blastoff of a Falcon 9 from seaside pad 39A at KSC at 9:38 a.m. EST Sunday, Feb. 19.

SpaceX will also attempt to achieve a secondary mission goal of landing the 156 foot tall first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1, located a few miles south of launch pad 40.

If you can’t personally be here to witness the launch in Florida, you can also watch NASA’s live coverage on NASA Television and the agency’s website.

The SpaceX/Dragon CRS-10 launch coverage will be broadcast on NASA TV beginning at 8:30 a.m. EDT Saturday, Feb. 18, with additional commentary on the NASA launch blog.

SpaceX will also feature their own live webcast beginning approximately 20 minutes before launch at 9:41 a.m. EDT.

You can watch the launch live at NASA TV at – http://www.nasa.gov/nasatv

You can also watch the launch live at SpaceX Webcast at – spacex.com/webcast

The launch window is instantaneous, meaning that any delays due to weather or technical issues results in a minimum 1 day postponement.

The long awaited FAA launch license was finally granted at the last minute on Friday afternoon – less than 24 hours before launch.

The weather outlook currently is improving from earlier in the week and looks good for Saturday morning with a 70% chance of favorable condition at launch time. The concerns are for thick clouds according to Air Force meteorologists with the 45th Space Wing at Patrick Air Force Base.

In case of a scrub for any reason on Feb. 18, the backup launch opportunity is 9:38 a.m. Sunday, Feb. 19. with NASA TV coverage starting at about 8:10 a.m. EDT.

CRS-10 marks only the third time SpaceX has attempted a land landing of the 15 story tall first stage booster.

Shotwell confirmed they are attempting the secondary mission of landing the 156 foot tall first stage of the Falcon 9 rocket on land at Cape Canaveral Air Force Station’s Landing Zone 1, located about 9 miles south of launch pad 39a.

And it won’t take long to learn the results – the ground landing at LZ -1 will take place about 9 minutes after liftoff.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

This marks the first time any fully integrated rocket has stood on pad 39A for a scheduled launch since the retirement of NASA’s Space Shuttles in July 2011 on the STS-135 mission to the space station.

The historic NASA launch pad was formerly used to launch both America’s space shuttles and astronauts on Apollo/Saturn V moon landing missions as far back as the 1960s.

Dragon is carrying more than 5500 pounds of equipment, gear, food, crew supplies, hardware and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload in support of the Expedition 50 and 51 crew members.

SAGE III will measure stratospheric ozone, aerosols, and other trace gases by locking onto the sun or moon and scanning a thin profile of the atmosphere.

The LIS lightning mapper will measure lightning from the altitude of the ISS. NASA’s RAVEN experiment will test autonomous docking technologies for spacecraft.

The research supplies and equipment brought up by Dragon will support over 250 scientific investigations to advance knowledge about the medical, psychological and biomedical challenges astronauts face during long-duration spaceflight.

Watch for Ken’s onsite CRS-10 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX CRS-10 launch to ISS, ULA SBIRS GEO 3 launch, EchoStar launch GOES-R launch, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Feb 17- 19: “SpaceX CRS-10 launch to ISS, ULA Atlas SBIRS GEO 3 launch, EchoStar 19 comsat launch, GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 rocket rests horizontal atop Launch Complex 39-A at the Kennedy Space Center on 16 Feb 2017 as seen from Launch Complex 39-B. This is the first rocket rolled out to launch from pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff of the CRS-10 mission slated for 19 Feb. Credit: Ken Kremer/Kenkremer.com
First SpaceX Falcon 9 rocket atop Launch Complex 39A at the Kennedy Space Center comes to life with successful static hot fire test at 430 p.m. on 12 Feb. 2017 as seen from Space View Park, Titusville, Fl. Liftoff is slated for no earlier than 19 Feb. 2017. Credit: Ken Kremer/Kenkremer.com

SpaceX Falcon 9 Breathes First Fire at KSC Pad 39A – Successful Static Fire Test Paves Path to Feb. 18 ISS Launch

First SpaceX Falcon 9 rocket atop Launch Complex 39-A at the Kennedy Space Center comes to life with successful static hot fire test at 430 p.m. on 12 Feb 2017 as seen from Space View Park, Titusville, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Credit: Ken Kremer/Kenkremer.com
First SpaceX Falcon 9 rocket atop Launch Complex 39-A at the Kennedy Space Center comes to life with successful static hot fire test at 430 p.m. on 12 Feb 2017 as seen from Space View Park, Titusville, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Credit: Ken Kremer/Kenkremer.com

SPACE VIEW PARK/KENNEDY SPACE CENTER, FL – For the first time in more than half a decade, a rocket came to life at NASA’s Kennedy Space Center when a SpaceX Falcon 9 breathed her first fire at historic pad 39A today, Sunday, Feb. 12 – successfully completing a critical static test firing of the first stage engines that opens the door to a launch to the space station next weekend for NASA.

The hot fire test generated a huge plume of smoke exhausting out the north side of the flame trench of Launch Complex 39A at approximately 4:30 p.m. EST, Feb. 12.

The hold down engine test with the erected rocket involved the ignition of all nine Merlin 1D first stage engines generating some 1.7 million pounds of thrust at pad 39A – which has been repurposed from its days as a shuttle launch pad.

The Merlin 1D engines fired for about 3 seconds while the two stage rocket was restrained on the pad.

SpaceX confirmed the test via social media shortly after it took place.

“First static fire test of Falcon 9 at historic launch complex 39A completed in advance of Dragon’s upcoming mission to the @Space_Station,” SpaceX tweeted in a very brief announcement.

I watched excitedly from a public viewing spot at Space View Park in Titusville as the exhaust plume grew quickly in size to a gigantic grey-white colored mushroom cloud of smoke and ash, heaving out the north side of the flame trench silent since the shuttle era.

Then just as quickly the smoke cloud dissipated completely within about 10 minutes leaving barely a trace of what we can expect to see soon.

Titusville offers a prime viewing location for anyone interested in traveling to the Florida Space Coast to see this Falcon 9 launch in person.

First SpaceX Falcon 9 rocket atop Launch Complex 39A at the Kennedy Space Center comes to life with successful static hot fire test at 430 p.m. on 12 Feb. 2017 as seen from Space View Park, Titusville, Fl. Liftoff is slated for no earlier than 18 Feb. 2017. Credit: Ken Kremer/Kenkremer.com

The test confirms that both the first stage engines and the rocket are suited for liftoff. Over the past few days, launch teams also tested the pad equipment, raised and lowered the rocket and conducted fit checks of the rocket at the pad.

The test had been delayed several days as technicians coped with issues until all was right to carry out the static fire test.

The positive outcome paves the path for a Falcon 9.Dragon blastoff as soon as next Saturday.

This marks the first time any rocket has stood on pad 39A and fired its engines since the retirement of NASA’s Space Shuttles in July 2011 on the STS-135 mission to the space station.

First SpaceX Falcon 9 rocket atop Launch Complex 39A at the Kennedy Space Center comes to life with successful static hot fire test at 430 p.m. on 12 Feb. 2017 as seen from Space View Park, Titusville, Fl. Liftoff is slated for no earlier than 18 Feb. 2017. Credit: Ken Kremer/Kenkremer.com

Liftoff of the Falcon 9 is slated for no earlier than next Saturday, 18 Feb 2017 on a critical cargo flight for NASA to deliver over two and a half tons of science and supplies to the six person crew living and working on the International Space Station (ISS).

The rocket – minus the payload comprising the Dragon cargo spacecraft – was rolled out of the SpaceX processing hangar at the perimeter fence and then up the incline to the top of pad 39A on Friday morning using a dedicated transporter-erector.

First SpaceX Falcon 9 rocket stands erect atop Launch Complex 39-A at the Kennedy Space Center on 10 Feb 2017 as seen from Playalinda Beach, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff to the ISS is slated for 18 Feb 2017 on the CRS-10 resupply mission for NASA. Credit: Jeff Seibert/AmericaSpace

After the successful completion of the static fire test, the booster will be rolled back to the big processing hangar and the Dragon resupply ship will be integrated on top.

The historic NASA launch pad was formerly used to launch both America’s space shuttles and astronauts on Apollo/Saturn V moon landing missions.

Dragon will be loaded with more than 5500 pounds of equipment, gear, food, supplies and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

SpaceX was previously employing pad 40 on Cape Canaveral Air Force Station for Falcon 9 launches to the ISS as well as commercial launches.

But pad 40 suffered severe damage following the unexpected launch pad explosion on Sept 1, 2016 that completely destroyed a Falcon 9 and the $200 million Amos-6 commercial payload during a prelaunch fueling test.

An accident investigation revealed that a second stage helium tank burst due to friction ignition during the fueling test.

SpaceX modified the fueling procedures as a short term fix and is working on redesigning the second stage as a long term fix.

SpaceX is working to repair and refurbish pad 40. It is not known when it will be ready to resume launches.

Thus SpaceX has had to switch launch pads for near term future flights and press pad 39A into service much more urgently, speeding up the refurbishing and repurposing work which at last is sufficient to launch rockets again.

Pad 39A has lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

STS-135: Last launch using RS-25 engines that will now power NASA’s SLS deep space exploration rocket. NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com

First SpaceX Falcon 9 Erected at Historic Launch Pad 39A for Feb. 18 Blastoff

First SpaceX Falcon 9 rocket stands erect atop Launch Complex 39-A at the Kennedy Space Center on 10 Feb 2017 as seen from Playalinda Beach, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff to the ISS is slated for 18 Feb 2017 on the CRS-10 resupply mission for NASA. Credit: Jeff Seibert/AmericaSpace
First SpaceX Falcon 9 rocket stands erect atop Launch Complex 39-A at the Kennedy Space Center on 10 Feb 2017 as seen from Playalinda Beach, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff to the ISS is slated for 18 Feb 2017 on the CRS-10 resupply mission for NASA. Credit: Jeff Seibert/AmericaSpace

KENNEDY SPACE CENTER, FL – The first SpaceX Falcon 9 rocket ever to grace historic launch pad 39A at NASA’s Kennedy Space Center in Florida was erected this afternoon, Friday, Feb. 10, to prepare the booster for a critical static fire sometime Saturday, and a launch to the space station next weekend – if all goes well.

This marks the first time any rocket has stood on pad 39A since the retirement of NASA’s Space Shuttles in July 2011.

Liftoff of the Falcon 9 is slated for no earlier than next Saturday, 18 Feb 2017 on a critical cargo flight for NASA to deliver over two and a half tons of science and supplies to the six person crew living and working on the International Space Station (ISS).

The rocket – minus the payload comprising the Dragon cargo spacecraft – was rolled out of the SpaceX processing hangar at the perimeter fence and then up the incline to the top of pad 39A this morning using a dedicated transporter-erector.

A wider-angle shot from the top of the CBS bureau at KSC showing the first SpaceX Falcon 9 atop pad 39A 3.1 miles away on Feb 20, 2017. Credit: Bill Harwood/CBS News

The booster was then hoisted into launch position this afternoon.

The scene was viewed by spectators including my space journalist colleague Jeff Seibert.

First SpaceX Falcon 9 rocket stands erect atop Launch Complex 39-A at the Kennedy Space Center on 10 Feb 2017 as seen from Playalinda Beach, Fl. This is the first rocket to stand on pad 39A since the retirement of NASA’s Space Shuttles in July 2011. Liftoff to the ISS is slated for 18 Feb 2017 on the CRS-10 resupply mission for NASA. Credit: Jeff Seibert/AmericaSpace

The historic NASA launch pad was formerly used to launch both America’s space shuttles and astronauts on Apollo/Saturn V moon landing missions.

SpaceX CEO Elon Musk also posted a photo on instagram with this caption:

“Falcon 9 rocket now vertical at Cape Canaveral on launch complex 39-A. This is the same launch pad used by the Saturn V rocket that first took people to the moon in 1969. We are honored to be allowed to use it.”

First SpaceX Falcon 9 rocket stands erect atop Launch Complex 39-A at the Kennedy Space Center on 10 Feb 2017. The photo was posted to Instagram by SpaceX CEO Elon Musk. Credit: Elon Musk/SpaceX

After the successful completion of the static fire test, the booster will be rolled back to the big processing hangar and the Dragon resupply ship will be integrated on top.

During the brief static fire test, all 9 Merlin 1D first stage engines are ignited for a few seconds to confirm they and the rocket are suited for liftoff while hold down clamps restrain the rocket on the pad.

Dragon will be loaded with more than 5500 pounds of equipment, gear, food, supplies and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

Pad 39A has lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX crews are renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. New rocket processing hangar sits at left. Credit: Ken Kremer/kenkremer.com

NASA Approves First Commercial Airlock for Space Station Science and SmallSat Deployment

Artists concept of first commercially funded airlock on the space station being developed by NanoRacks that will launch on a commercial resupply mission in 2019. It will be installed on the station’s Tranquility module. Credits: NanoRacks
Artists concept of first commercially funded airlock on the space station being developed by NanoRacks that will launch on a commercial resupply mission in 2019. It will be installed on the station’s Tranquility module. Credits: NanoRacks

In a significant move towards further expansion of the International Space Station’s (ISS) burgeoning research and commercial space economy capabilities, NASA has approved the development of the first privately developed airlock and is targeting blastoff to the orbiting lab complex in two years.

Plans call for the commercial airlock to be launched on a commercial cargo vessel and installed on the U.S. segment of the ISS in 2019.

It enhances the US capability to place equipment and payloads outside and should triple the number of small satellites like CubeSats able to be deployed.

The privately funded commercial airlock is being developed by Nanoracks in partnership with Boeing, which is the prime contractor for the space station.

The airlock will be installed on an open port on the Tranquility module – that already is home to the seven windowed domed Cupola observation deck and the commercial BEAM expandable module built by Bigelow Aerospace.

“We want to utilize the space station to expose the commercial sector to new and novel uses of space, ultimately creating a new economy in low-Earth orbit for scientific research, technology development and human and cargo transportation,” said Sam Scimemi, director, ISS Division at NASA Headquarters in Washington, in a statement.

“We hope this new airlock will allow a diverse community to experiment and develop opportunities in space for the commercial sector.”

The airlock will launch aboard one of NASA’s commercial cargo suppliers in 2019. But the agency has not specified which contractor. The candidates include the SpaceX cargo Dragon, an enhanced ATK Cygnus or potentially the yet to fly SNC Dream Chaser.

Boeing will supply the airlock’s Passive Common Berthing Mechanism (CBM) hardware to connect it to the Tranquility module.

Artists concept of first commercially funded airlock on the space station being developed by NanoRacks that will launch on a commercial resupply mission in 2019. It will be installed on the station’s Tranquility module. Credits: NanoRacks

The airlock will beef up the capability of transferring equipment, payloads and deployable satellites from inside the ISS to outside, significantly increasing the utilization of ISS, says Boeing.

“The International Space Station allows NASA to conduct cutting-edge research and technology demonstrations for the next giant leap in human exploration and supports an emerging space economy in low-Earth orbit. Deployment of CubeSats and other small satellite payloads from the orbiting laboratory by commercial customers and NASA has increased in recent years. To support demand, NASA has accepted a proposal from NanoRacks to develop the first commercially funded airlock on the space station,” says NASA.

“The installation of NanoRacks’ commercial airlock will help us keep up with demand,” said Boeing International Space Station program manager Mark Mulqueen. “This is a big step in facilitating commercial business on the ISS.”

Right now the US uses the airlock on the Japanese Experiment Module (JEM) to place payloads on the stations exterior as well as for small satellite deployments. But the demand is outstripping the JEM’s availability.

The Nanoracks airlock will be larger and more robust to take up the slack.

NASA has stipulated that the Center for the Advancement of Science in Space (CASIS), NASA’s manager of the U.S. National Laboratory on the space station, will be responsible for coordinating all payload deployments from the commercial airlock – NASA and non NASA.

“We are entering a new chapter in the space station program where the private sector is taking on more responsibilities. We see this as only the beginning and are delighted to team with our friends at Boeing,” said Jeffrey Manber, CEO of NanoRacks.

The NanoRacks commercial airlock could potentially launch to the ISS in the trunk of a SpaceX cargo Dragon. This Up close view shows the SpaceX Dragon CRS-9 resupply ship and solar panels sitting atop a Falcon 9 rocket at pad 40 prior to blastoff to the ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Awaits FAA Falcon 9 Launch License for 1st Pad 39A Blastoff on NASA ISS Cargo Flight

SpaceX crews are renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. New rocket processing hangar sits at left. Credit: Ken Kremer/kenkremer.com
SpaceX crews are renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. New rocket processing hangar sits at left. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – With liftoff tentatively penciled in for mid-February, SpaceX still awaits FAA approval of a launch license for what will be the firms first Falcon 9 rocket to launch from historic pad 39A at the Kennedy Space Center – on a critical NASA mission to resupply the space station – the Federal Aviation Administration (FAA) confirmed today to Universe Today.

“The FAA is working closely with SpaceX to ensure the activity described in the application meets all applicable regulations for a launch license,” FAA spokesman Hank Price confirmed to Universe Today.

As of today, Feb. 7, SpaceX has not yet received “a license determination” from the FAA – as launch vehicle, launch pad and payload preparations continue moving forward for blastoff of the NASA contracted flight to carry science experiments and supplies to the International Space Station (ISS) aboard a SpaceX cargo Dragon atop an upgraded SpaceX Falcon 9 rocket from Launch Complex 39A on the Florida Space Coast.

“The FAA will continue to work with SpaceX to provide a license determination in a timely manner,” Price told me.

SpaceX currently has license applications pending with the FAA for both the NASA cargo launch and pad 39A. No commercial launch can take place without FAA approval.

Blastoff of SpaceX Falcon 9 on Dragon CRS-9 resupply mission to the International Space Station (ISS) at 12:45 a.m. EDT on July 18, 2016. Credit: Ken Kremer/kenkremer.com

The goal of the 22-story tall SpaceX Falcon 9 is to carry an unmanned Dragon cargo freighter for the NASA customer on the CRS-10 resupply mission to the International Space Station (ISS).

Dragon will be loaded with more than two tons of equipment, gear, food, supplies and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload.

Engineers at work processing NASA’s Stratospheric Aerosol and Gas Experiment III, or SAGE III instrument inside the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida during exclusive visit by Ken Kremer/Universe Today in December 2016. Technicians are working in a super-clean ‘tent’ built in the SSPF high bay to protect SAGE III’s special optics and process the Ozone mapper for upcoming launch on the SpaceX CRS-10 Dragon cargo flight to the International Space Station in early 2017. Credit: Ken Kremer/kenkremer.com

The historic NASA launch pad was formerly used to launch both America’s space shuttles and astronauts on Apollo/Saturn V moon landing missions.

SpaceX, founded by billionaire CEO Elon Musk, leased Launch Complex 39A from NASA back in April 2014 and is modifying and modernizing the pad for unmanned and manned launches of the Falcon 9 as well as the Falcon Heavy.

The role of the FAA is to license commercial launches and protect the public.

“The FAA licenses commercial rocket launches and reentries to ensure the protection of public health and safety,” Price elaborated.

This FAA license situation is similar to that for last month’s Falcon 9 ‘Return to Flight’ launch from California, where the SpaceX approval was granted only days before liftoff of the Iridium-1 mission.

Last week SpaceX announced a shuffled launch schedule, whereby the NASA cargo flight on the CRS-10 resupply mission was placed first in line for liftoff from pad 39A – ahead of a commercial EchoStar communications satellite.

The aerospace company said the payload switch would allow additional time was to complete all the extensive ground support work and pad testing required for repurposing seaside Launch Complex 39A from launching the NASA Space Shuttle to the SpaceX Falcon 9.

The inaugural Falcon 9 blastoff from pad 39A has slipped repeatedly from January into February 2017.

The unofficial most recently targeted ‘No Earlier Than’ NET date for CRS-10 has apparently slipped from NET Feb 14 to Feb 17.

CRS-10 counts as SpaceX’s tenth cargo flight to the ISS since 2012 under contract to NASA.

Further launch postponements are quite possible at any time and NASA is officially stating a goal of “NET mid-February” – but with no actual target date specified.

SpaceX is repurposing historic pad 39A at the Kennedy Space Center, Florida for launches of the Falcon 9 rocket. Ongoing pad preparation by work crews is seen in this current view taken on Jan. 27, 2017. Credit: Ken Kremer/kenkremer.com

Crews have been working long hours to transform and refurbish pad 39A and get it ready for Falcon 9 launches. Furthermore, a newly built transporter erector launcher was seen raised at the pad multiple times in recent weeks. The transporter will move the rocket horizontally up the incline at the pad, and then erect it vertically for launch.

SpaceX was previously employing pad 40 on Cape Canaveral Air Force Station for Falcon 9 launches to the ISS as well as commercial launches.

But pad 40 suffered severe damage following the unexpected launch pad explosion on Sept 1, 2016 that completely destroyed a Falcon 9 and the $200 million Amos-6 commercial payload during a prelaunch fueling test.
Furthermore it is not known when pad 40 will be ready to resume launches.

Thus SpaceX has had to switch launch pads for near term future flights and press pad 39A into service much more urgently, and the refurbishing and repurposing work is not yet complete.

Pad 39A has lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

To date SpaceX has not rolled a Falcon 9 rocket to pad 39A, not raised it to launch position, not conducted a fueling exercise and not conducted a static fire test. All the fit checks with a real rocket remain to be run.

Up close view of SpaceX Dragon CRS-9 resupply ship and solar panels atop Falcon 9 rocket at pad 40 prior to blastoff to ISS on July 18, 2016 from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com

Once the pad is ready, SpaceX plans an aggressive launch schedule in 2017.

“The launch vehicles, Dragon, and the EchoStar satellite are all healthy and prepared for launch,” SpaceX stated.

The history making first use of a recycled Falcon 9 carrying the SES-10 communications satellite could follow as soon as March or April, if all goes well – as outlined here.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Shuffles Falcon 9 Launch Schedule, NASA Gets 1st Launch from Historic KSC Pad 39A

SpaceX is repurposing historic pad 39A at the Kennedy Space Center, Florida for launches of the Falcon 9 rocket. Ongoing pad preparation by work crews is seen in this current view taken on Jan. 27, 2017. Credit: Ken Kremer/kenkremer.com
SpaceX is repurposing historic pad 39A at the Kennedy Space Center, Florida for launches of the Falcon 9 rocket. Ongoing pad preparation by work crews is seen in this current view taken on Jan. 27, 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – SpaceX announced Sunday (Jan. 29) a significant shuffle to the Falcon 9 launch schedule, saying that a key NASA mission to resupply the space station is moving to the head of the line and will now be their first mission to launch from historic pad 39A at the Kennedy Space Center – formerly used to launch space shuttles.

The late breaking payload switch will allow SpaceX, founded by billionaire CEO Elon Musk, additional time to complete all the extensive ground support work and pad testing required for repurposing seaside Launch Complex 39A from launching the NASA Space Shuttle to the SpaceX Falcon 9.

Blastoff of the 22-story tall SpaceX Falcon 9 carrying an unmanned Dragon cargo freighter with NASA as customer on the CRS-10 resupply mission to the International Space Station (ISS) could come as soon as mid-February, said SpaceX.

“SpaceX announced today that its first launch from Launch Complex 39A (LC-39A) at NASA’s Kennedy Space Center in Florida will be the CRS-10 mission to the International Space Station,” said SpaceX in a statement.

CRS-10 counts as SpaceX’s tenth cargo flight to the ISS since 2012 under contract to NASA.

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. Credit: Ken Kremer/kenkremer.com

Crews have been working long hours to modify pad 39A and get it ready for Falcon 9 launches. Also, the newly built transporter erector launcher was seen raised at the pad multiple times in recent days. The transporter will move the rocket horizontally up the incline at the pad, and then erect it vertically.

“This schedule change allows time for additional testing of ground systems ahead of the CRS-10 mission,” SpaceX announced in a statement.

The surprise switch in customers means that the previously planned first Falcon 9 launch from pad 39A of the commercial EchoStar 23 communications satellite is being pushed off to a later date – perhaps late February.

Until now, EchoStar 23 was slated to be the first satellite launched by a Falcon 9 from Launch Complex 39A on NASA’s Kennedy Space Center. It could have come as soon as by the end of this week.

However, the Falcon 9 launch date from pad 39A has slipped repeatedly in January, with this week on Feb. 3 as the most recently targeted ‘No Earlier Than’ NET date.

SpaceX successfully resumed launches of the Falcon 9 earlier this month when the first flock of 10 Iridium NEXT mobile voice and data relay satellites blasted off on the Iridium 1 mission from Vandenberg Air Force Base in California on Jan. 14, 2017.

NASA now gets the first dibs for using pad 39A which has lain dormant for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.

SpaceX leased pad 39A from NASA for launches of the Falcon 9 and Falcon Heavy back in April 2014 and was already employing pad 40 on Cape Canaveral Air Force Station for Falcon 9 launches to the ISS.

The last Dragon resupply mission to the ISS blasted off on July 18, 2016 on the CRS-9 mission. The Falcon 9 first stage was also successfully recovered via a propulsive soft landing back at the Cape at night.

SpaceX Falcon 9 launches and lands over Port Canaveral in this streak shot showing rockets midnight liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 12:45 a.m. EDT on July 18, 2016 carrying Dragon CRS-9 craft to the International Space Station (ISS) with almost 5,000 pounds of cargo and docking port. View from atop Exploration Tower in Port Canaveral. Credit: Ken Kremer/kenkremer.com

The last successful Falcon 9 launch from Space Launch Complex-40 took place on Aug. 14, 2016, carrying the JCSAT-16 Japanese communications satellite to orbit.

Launch of SpaceX Falcon 9 carrying JCSAT-16 Japanese communications satellite to orbit on Aug. 14, 2016 at 1:26 a.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

But following the unexpected launch pad explosion on Sept 1, 2016 that completely destroyed a Falcon 9 and the $200 million Amos-6 commercial payload during a prelaunch fueling test, pad 40 suffered extensive damage.

Furthermore it is not known when the pad will be ready to resume launches.

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

So SpaceX has had to switch launch pads for near term future flights and press pad 39A into service much more urgently, and the refurbishing and repurposing work is not yet complete.

To date SpaceX has not rolled a Falcon 9 rocket to pad 39A, not raised it to launch position, not conducted a fueling exercise and not conducted a static fire test. All the fit checks with a real rocket remain to be run.

Thus the current launch target of mid-February for CRS-10 remains a target date and not a firm launch date. EchoStar 23 is next in line.

“The launch is currently targeted for no earlier than mid-February,” SpaceX elaborated.

“Following the launch of CRS-10, first commercial mission from 39A is currently slated to be EchoStar XXIII.”

Once the pad is ready, SpaceX plans an aggressive launch schedule in 2017.

“The launch vehicles, Dragon, and the EchoStar satellite are all healthy and prepared for launch,” SpaceX stated.

The history making first use of a recycled Falcon 9 carrying the SES-10 communications satellite could follow as soon as March, if all goes well.

Incredible sight of pleasure craft zooming past SpaceX Falcon 9 booster from Thaicom-8 launch on May 27, 2016 as it arrives at the mouth of Port Canaveral, FL, atop droneship platform on June 2, 2016. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX crews are renovating Launch Complex 39A at the Kennedy Space Center for launches of commercial and human rated Falcon 9 rockets as well as the Falcon Heavy, as seen here during Dec 2016 with construction of a dedicated new transporter/erector. At new rocket processing hangar sits at left. Credit: Ken Kremer/kenkremer.com