SpaceX Starts 2014 With Spectacular Private Rocket Success Delivering Thai Satellite to Orbit – Gallery

Blastoff of 1st Falcon 9 rocket in 2014 with Thaicom 6 commercial satellite from Cape Canaveral, FL on Jan. 6. Credit: Jeff Seibert

SpaceX began 2014 with a spectacular big bang for private space today, Jan. 6, when the firms next generation Falcon 9 rocket blasted off for the first time this year and successfully delivered the Thaicom 6 commercial broadcasting satellite to its target orbit.

The new, next generation Falcon 9 rocket lifted off at 5:06 p.m. EST (2206 GMT) from Cape Canaveral Air Force Station, Florida with the Thai payload.

The sunset SpaceX launch from the Florida Space Coast took place precisely on time with ignition of the nine Merlin 1-D first stage engines at Space Launch Complex 40.

TCom6-01

The launch was broadcast live via a SpaceX webcast.

The nine engines on the 224 foot tall Falcon 9 v1.1 rocket generate 1.3 million pounds of thrust, about 50% more than the initial Falcon 9.

The second stage Merlin vacuum engine fired twice as planned.

The first firing began approximately 184 seconds into flight and lasted five minutes and 35 second to deliver Thaicom 6 into its parking orbit.

Clearing the strongback, the Thaicom 6/Falcon 9 mission roars from the pad in its quest for supergeosync orbit. Credit: nasatech.net
Clearing the strongback, the Thaicom 6/Falcon 9 mission roars from the pad in its quest for supergeosync orbit. Credit: nasatech.net

The engine relit for a second burn eighteen minutes later and lasted just over one minute to carry the satellite to its final geostationary transfer orbit.

The restart of the Falcon 9 second stage is a requirement for all geostationary transfer missions.

Falcon 9 rocket soar to space with Thaicom 6 commercial satellite on Jan 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert
Falcon 9 rocket soars to space with Thaicom 6 commercial satellite on Jan 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert

31 minutes after liftoff the Thaicom 6 spacecraft separated from the Falcon 9 launch vehicle and was placed into the desired geosynchronous transfer orbit of 295 x 90,000 km geosynchronous at 22.5 degrees inclination.

SpaceX said in a statement that, “The Falcon 9 launch vehicle performed as expected, meeting 100% of mission objectives.”

SpaceX did not attempt to recover the first stage booster on this mission, SpaceX spokeswoman Emily Shanklin told me. “We may try on the next flight.”

Thaicom 6 commercial broadcasting satellite in geosynchronous orbit, artists concept
Thaicom 6 commercial broadcasting satellite in geosynchronous orbit, artists concept

This marks the second launch of the upgraded Falcon 9 in just over a month, following closely on the heels of the maiden flight from Cape Canaveral on Dec. 3 with another commercial satellite, namely SES-8.

“Today’s successful launch of the THAICOM 6 satellite marks the eighth successful flight in a row for Falcon 9,” said Gwynne Shotwell, President of SpaceX. “SpaceX greatly appreciates THAICOM’s support throughout this campaign and we look forward to a busy launch schedule in 2014.”

Both the Thaicom-6 and SES-8 satellites were built by Orbital Sciences, one of SpaceX’s chief competitors in the commercial space race, making for strange bedfellows.

Thaicom 6 patch
Thaicom 6 patch

Indeed it’s a very busy week for private rockets.

Orbital Sciences is poised to launch their Antares rocket in less than 48 hours on Wednesday, Jan. 8 on a commercial resupply mission for NASA that’s bound for the international Space Station (ISS).

The new Falcon 9 is the key to fulfilling SpaceX’s future launch manifest of nearly 50 payloads worth billions of dollars for a diverse customer base.

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The next gen Falcon 9 will also launch the human rated SpaceX Dragon to the ISS in a bid to restore America’s human spaceflight capability.

A pair of critical Falcon 9/Dragon abort tests are planned for 2014. Read my new article and discussion with SpaceX CEO Elon Musk – here.

The next SpaceX Dragon cargo launch to the ISS is currently scheduled for Feb. 22, said SpaceX spokeswoman Emily Shanklin told Universe Today.

Sunset launch of Falcon 9 with Thiacom 6 broadcast satellite on Jan 6, 2014 from Cape Canaveral, FL.   Credit: Jeff Seibert
Sunset launch of Falcon 9 with Thiacom 6 broadcast satellite on Jan 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert
Almost clear of the catenary wires, the Thaicom 6/Falcon 9 mission streaks to orbit. Credit: nasatech.net
Almost clear of the catenary wires, the Thaicom 6/Falcon 9 mission streaks to orbit. Credit: nasatech.net

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

…………….

Learn more about SpaceX, Orbital Sciences Antares Jan. 8 launch, Curiosity, Orion, MAVEN, MOM, Mars rovers and more at Ken’s upcoming presentations

Jan 7-9: “Antares/Cygnus ISS Rocket Launch from Virginia on Jan. 8” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Falcon 9 rocket disappears into the clouds following blastoff on Jan. 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert
Falcon 9 rocket disappears into the clouds following blastoff on Jan. 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert
Blastoff of 1st Falcon 9 rocket in 2014 with Thaicom 6 commercial satellite from Cape Canaveral, FL on Jan. 6. Credit: SpaceX
Blastoff of 1st Falcon 9 rocket in 2014 with Thaicom 6 commercial satellite from Cape Canaveral, FL on Jan. 6. Credit: SpaceX

SpaceX SES-8 Flawlessly Beautiful Dec. 3 Launch – Photo and Video Gallery

Ignition of Next Generation SpaceX Falcon 9 rocket on Dec. 3, 2013 from Launch Complex 40 at Cape Canaveral Air Force Station, FL lofting SES-8 telecommunications satellite to geosynchronous orbit. Credit: Alan Walters/americaspace.com

CAPE CANAVERAL AIR FORCE STATION, FL – The flawless blastoff of SpaceX’s next generation Falcon 9 rocket on Tuesday Dec. 3 put on a spectacular sky show along the Florida Space Coast that was both beautiful and unforgettable – besides being truly historic as the firms first ever delivery of a commercial space satellite to the lucrative market of geostationary orbit.

For your enjoyment here’s a collection of photos and videos from fellow space photojournalists of the 5:41 p.m. EST sunset launch from Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, FL.

Following a pair of launch scrubs last week on Nov. 25 and Thanksgiving Day Nov. 28 caused by issues with the powerful new Merlin 1-D first stage engines, the third time was fat last the charm as the Falcon 9 blasted precisely at the opening of the 86 minute launch window.

A SpaceX Falcon 9 V1.1 rocket vents oxygen following Thursday evenings first launch attempt from Launch Complex 40 at Cape Canaveral Air Force Station. The first attempt was halted after computers showed that the engines had a slower than expected thrust rate upon startup. Credit: Walter Scriptunas II images
A SpaceX Falcon 9 V1.1 rocket vents oxygen following Thursday evenings first launch attempt from Launch Complex 40 at Cape Canaveral Air Force Station. The first attempt was halted after computers showed that the engines had a slower than expected thrust rate upon startup. Credit: Walter Scriptunas II images
As the Falcon 9 begins to 'thread the needle' of the lightning wires, a shower of ice and flames and steam scatters, cascades and billows. Credit: nasatech.net
As the Falcon 9 begins to ‘thread the needle’ of the lightning wires, a shower of ice and flames and steam scatters, cascades and billows. Credit: nasatech.net
Clear of the catenary lightning wires, the Falcon 9/SES-8 mission streaks to orbit. Credit: nasatech.net
Clear of the catenary lightning wires, the Falcon 9/SES-8 mission streaks to orbit. Credit: nasatech.net
Beautiful streak shot of SpaceX Falcon 9 rocket launch with SES-8 satellite on Dec. 3, 2013. Credit: John Studwell
Beautiful streak shot of SpaceX Falcon 9 rocket launch with SES-8 satellite on Dec. 3, 2013. Credit: John Studwell
SpaceX Falcon 9 rocket with SES-8 communications satellite soars to orbit.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket with SES-8 communications satellite soars to orbit. Credit: Ken Kremer/kenkremer.com
Falcon 9/SES-8 streak to orbit on Dec. 3, 2013.  Credit: Jeff Seibert
Falcon 9/SES-8 streak to orbit on Dec. 3, 2013. Credit: Jeff Seibert
Falcon 9/SES-8 streak to orbit on Dec. 3, 2013.  Credit: Jeff Seibert
Falcon 9/SES-8 streak to orbit on Dec. 3, 2013. Credit: Jeff Seibert
Wispy exhaust plume from SpaceX Falcon 9 rocket launch with SES-8 satellite on Dec. 3, 2013. Credit: John Studwell
Wispy exhaust plume from SpaceX Falcon 9 rocket launch with SES-8 satellite on Dec. 3, 2013. Credit: John Studwell
Blastoff of Falcon 9/SES-8 satellite on Dec. 3, 2013.  Credit: Julian Leek
Blastoff of Falcon 9/SES-8 satellite on Dec. 3, 2013. Credit: Julian Leek

Launch Video

Stay tuned here for continuing SpaceX & MAVEN news and Ken’s SpaceX and MAVEN launch reports from on site at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

…………….

Revolutionary Air-Launched Commercial Rocket to Orbit Announced by Microsoft Billionaire Paul Allen

Stratolaunch Systems Carrier Aircraft - Air Launch to Orbit Space Launch System. Developed by Scaled Composites, the aircraft manufacturer and assembler founded by Burt Rutan. The carrier will loft and drop the 500,000 multistage SpaceX rocket that will propel payloads to orbit at dramatically reduced costs. It will be the largest aircraft ever flown with a wing span of 385 feet and weighing 1.2 million pounds. Credit: Stratolaunch Systems. Watch complete video below.

[/caption]

A mega quartet of luminaries led by Microsoft co-founder Paul G. Allen and legendary aerospace designer Burt Rutan have joined forces to create a revolutionary new approach to space travel. This new privately funded venture entails the development of a mammoth air-launched space transportation system that aims to dramatically cut the high costs and risks of launching both cargo and human crews to low Earth orbit.

Allen and Rutan are teaming up with Elon Musk, founder of Space Exploration Technologies Corp, or SpaceX, and Michael Griffin, former NASA Administrator, to build the world’s largest aircraft ever flown and use it as a platform to loft a multi-stage SpaceX rocket that will deliver a payload of some 13,500 pounds into earth orbit, about the same class as a Delta II.

Allen and Rutan hope to build upon the spaceflight revolution that they pioneered with the suborbital SpaceShipOne in 2004, which was the first privately funded spaceship to reach the edge of space, and now take the critical next step and actually vault all the way to orbit.


Video Caption: Stratolaunch Systems is pioneering innovative solutions to revolutionize space transportation to orbit.

To accomplish this innovative leap, Allen and Rutan, announced the formation of a new company, funded by Allen, called Stratolaunch Systems at a press briefing today, Dec. 13, held in Seattle, WA. Allen is a billionaire and philanthropist who has funded a host of projects to advance science,

“Our national aspirations for space exploration have been receding,” Allen lamented at the start of the briefing. “This year saw the end of NASA’s space shuttle program. Constellation, which would have taken us back to the moon, has been mothballed as well. For the first time since John Glenn, America cannot fly its own astronauts into space.”

“With government funded spaceflight diminishing, there’s a much expanded opportunity for privately funded efforts.”

Rutan said that Stratolaunch will build a 1.2 million pound carrier aircraft sporting a wingspan of 385 feet – longer than a football field – and which will be powered by six 747 engines on takeoff. The carrier will be a twin fuselage vehicle, like the WhiteKnight developed by Rutan to launch SpaceShipOne.

Air launch of SpaceX rocket to orbit

The 120 foot long SpaceX rocket, weighing up to 490,000 pounds, will be slung in between and dropped at an altitude of about 30,000 feet for the remaining ascent to orbit.

SpaceX will construct a shorter, less powerful version of the firms existing Falcon 9 rocket, which may be either a Falcon 4 or Falcon 5 depending on specifications.

The new launch system will operate from a large airport or spaceport like the Kennedy Space Center, require a 12,000 feet long runway for takeoff and landing and be capable of flying up to 1,300 nautical miles to the payload’s launch point. Crews aboard the huge carrier aircraft will also conduct the countdown and firing of the booster and will monitor payload blasting to orbit.

“I have long dreamed about taking the next big step in private space flight after the success of SpaceShipOne – to offer a flexible, orbital space delivery system,” Allen said. “We are at the dawn of radical change in the space launch industry. Stratolaunch Systems is pioneering an innovative solution that will revolutionize space travel.”

The goal of Stratolaunch is to “bring airport-like operations to the launch of commercial and government payloads and, eventually, human missions,” according to a company statement.

Plans call for a first orbital flight within five years by around 2016. Test flights could begin around 2015.

“We believe this technology has the potential to someday make spaceflight routine by removing many of the constraints associated with ground launched rockets,” said Mike Griffin. “Our system will also provide the flexibility to launch from a large variety of locations.”

Mike Griffin added that the venture is aiming for the small to medium class payload market similar to what has been served by the venerable Delta II rocket, which is now being retired after decades of service.

“NASA’s science satellites could also be lofted by Stratolaunch.”

“At some point this vehicle could loft a crew of say six people,” Griffin stated.

“This is an exciting day,” concluded Allen.

“Stratolaunch will keep America at the forefront of space exploration and give tomorrow’s children something to search for in the night sky and dream about. Work has already started on our project at the Mojave Spaceport.”

SpaceX Dragon cargo spaceship propels commercial and science payloads to orbit following air-launch from gigantic carrier aircraft. Credit: Stratolaunch Systems

Forever Endeavour: USA has Plan to Continue Flying Space Shuttles

If a proposal by United Space Alliance is approved the shuttles Endeavour and Atlantis could continue to fly until at least 2017. Photo Credit: NASA

[/caption]

She is the youngest orbiter in NASA’s fleet – and she is being looked at to keep her country in space during a period when the U.S. will lack the capability to do so. Both Endeavour and her sister Atlantis are part of a proposal to keep the shuttles flying into 2017. United Space Alliance (USA) submitted the proposal in the latter part of 2010 as part of NASA’s Commercial Crew Development Round 2 ( CCDev2).

NASA asked aerospace firms for concepts and ideas to advance the cause of commercial crew transportation. NASA has offered to provide funding to companies to look into various manned space flight systems. USA submitted the Commercial Space Transportation System (CSTS) – an adapted version of the shuttle’s Space Transportation System title.

USA wanted to make sure that all options for crew transportation to orbit were on the table. That included keeping the orbiters Atlantis and Endeavour in service until 2017. If this plan succeeds, the shuttles could conduct missions as quickly as by the year 2013. They would have to wait for new external tanks to be produced. Two flights annually would cost approximately $1.5 billion.

Although some are calling the proposal a “long shot” the plan has some very tangible merits. It would limit the “gap” between the end of the end of the shuttle era and when commercial space-taxis could begin ferrying astronauts to the International Space Station (ISS). Keeping the shuttles in service would also help to significantly decrease dependence on the Russian Soyuz for access to the orbiting outpost.

“The CSTS could provide a near-term U.S. solution for crew transport until a new system is ready. It could provide a low-risk approach to bridging the gap in human spaceflight since the program has been flying since 1981 and is well understood,” USA spokesperson Tracy Yates told Universe Today. “It could also provide redundancy for human access to the ISS and therefore ensure the continued viability of an important national asset. The concept has the potential to offer a proven vehicle operated by a seasoned workforce at a market-driven price. It preserves down-mass capability, stabilizes a larger portion of the human spaceflight workforce for future NASA programs and keeps more crew transport dollars at home.”

For the Space Coast this proposal would also have the added benefit of staving off the crippling unemployment that has come as part of the one-two punch of the end of the shuttle era and the cancellation of the Constellation Program.

Although the CSTS has a specific date (2017) mentioned – it is capable of remaining in effect until the new commercial systems come online. This proposal would allow NASA to utilize a proven space vehicle and the overall idea of a “commercial shuttle program” is actually nothing new – the idea has been bandied about since the 90s.

However, while the cost is less than the $3 billion the shuttle program cost in 2010, it is basically the same amount that NASA is paying Space Exploration Technologies (SpaceX) for 12 missions to the space station. The NewSpace firm has stated that four manned flights would cost approximately $550 million.

Space Exploration Technologies (SpaceX) has stated that a flight on the manned version of the Dragon spacecraft would cost about $140 million. Image Credit: SpaceX

“The main thing that this program has going against it is this, what does the shuttle offer that the HTV, ATV, Soyuz and soon commercial craft can’t offer,” said noted space historian David M. Harland. “In today’s economic climate it makes more sense to pay $50 million or so for a seat on Soyuz.”