Retro Travel Posters Show Us The Future

Visitors to Jupiter view the Jovian auroras from balloons. Image: NASA/JPL.
Visitors to Jupiter view the Jovian auroras from balloons. Image: NASA/JPL.

One of the greatest things about being a space enthusiast is all of the discoveries that come out on an almost daily basis. One of the saddest things about being a space enthusiast is all of the discoveries and destinations that are so close, just beyond the horizon of our lifespan.

Will we colonize other planets? Sure, but most of us living will be gone by then. Will we spend time in glorious, gleaming space habitats? Obviously, but we’ll just be epitaphs by then. Sentient, alien species that gift us faster-than-light travel and other wonders? Maybe, but not before my bucket list has its final item checked off.

Citizen space travel? Hmmmm, tantalizingly within reach.

But now, new retro style posters from NASA, designed by the team at Invisible Creature, are making us feel nostalgic about things that haven’t even happened yet, and are helping us leave behind gloomy thoughts of being born at the wrong time.

The Grand Tour. Image: NASA/JPL
The Grand Tour. Image: NASA/JPL

The Grand Tour celebrates a time when our probes toured the planets, using gravity assist to propel them on their missions.

“Grandpa, do you remember the Grand Tour, when spacecraft used gravity assist to visit other worlds?”

“I sure do. Gravity assist. Those were the days. Swooping so close to Jupiter, you could feel the radiation killing your hair follicles. Only to be sling-shotted on to the next planet.”

“But why didn’t you just use a quantum drive to bend space time and appear at your destination?”

“Quantum drives! Those things ain’t natural. And neither is bending space-time. Give me a good old-fashioned chemical rocket any time.”

“Oh Grandpa.”

Visit Historic Mars. Image: NASA/JPL
Visit Historic Mars. Image: NASA/JPL

Visit the Historic Sites of Mars recalls a time when space pioneers colonized and terraformed Mars.

“Grandpa, what was Mars like in the Early Days?”

“You mean before it was terraformed? Very tough times.”

“Because conditions were so difficult? And food was hard to grow?”

“No. Because of the protesters.”

“Protesters? On Mars?”

“Yup. Every time we found a good spot for a Bacterial Production Facility (BPF), it seemed like there was an expired old rover in the way. The protesters didn’t think we should move ’em. Part of our heritage.”

“So what did you do Grandpa?”

“We created a network of computers that everybody would stare at all day. After that, nobody noticed what we did anymore.”

“Oh Grandpa.”

Visit Beautiful Southern Enceladus. Image: NASA/JPL
Visit Beautiful Southern Enceladus. Image: NASA/JPL

Visit Beautiful Southern Enceladus invites vacationers to visit Saturn’s sixth largest moon to view the ice geysers there.

“Grandpa, did you ever visit Enceladus?”

“I sure did. A beautiful, haunting place.”

“Was it scary? With all of the ice geysers erupting unpredictably?”

“On no. I always knew when one was going to erupt.”

“What? How did you know?”

“My arthritis would flare up.”

“Oh Grandpa.”

Other Posters

NASA has a growing collection of other posters. You can see them here.

SpaceX has their own posters, which you can see here. They also have cool t-shirts with the same designs.

ULA Atlas V Delivers Final GPS IIF Navigation Satellite to Orbit for USAF – Critical to Military/Civilian Users

United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission lifted off at 8:38 a.m. EST on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission lifted off at 8:38 a.m. EST on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla.  Credit: Ken Kremer/kenkremer.com
United Launch Alliance (ULA) Atlas V rocket carrying the GPS IIF-12 mission lifted off at 8:38 a.m. EST on Feb. 5, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION – Despite howling winds and unseasonably frigid temperatures in the ‘sunshine state’, United Launch Alliance’s workhorse Atlas V rocket successfully blasted off this morning, Friday, Feb 5, and delivered the final GPS satellite in the IIF series to orbit for the US Air Force.

The ULA Atlas V carried the Global Positioning System (GPS) IIF-12 navigation satellite to orbit as the booster beautifully pierced the Florida skies – thus completing the constellation of next generation GPS IIF satellites that are critical to both military and civilian users on a 24/7 basis. Continue reading “ULA Atlas V Delivers Final GPS IIF Navigation Satellite to Orbit for USAF – Critical to Military/Civilian Users”

Blue Origin Reaches Another Milestone: Reusable Rocket Launches and Lands Safely

Blue Origin's New Shepard rocket has successfully launched and landed a second time. Image: Blue Origin
Blue Origin's New Shepard rocket has successfully launched and landed a second time. Image: Blue Origin

On Friday, January 22nd, commercial space company Blue Origin successfully launched and landed its reusable rocket, New Shepard, at their launch facility in Texas. This is the second flight for New Shepard, showing that reusable rockets are on their way to becoming the launch system of choice. New Shepard launched, travelled to apogee at 101.7 kilometres, (63.19 miles) and then descended to land safely at their site in West Texas. This is the first successful reuse of a rocket in history.

Reusable rockets are an important development for space travel. Rockets are enormously expensive, and having to trash each rocket after a single use makes commercial space flight a real challenge. Blue Origin—and other companies like SpaceX—are blazing a trail to cheaper space flight with their reusable designs. This is great, not only for all the good sciencey reasons that we love so much, but because eventually civilian space enthusiasts may be able to travel past the Karman Line without having to sell all their possessions to do so. (Reserve your ticket here.) Continue reading “Blue Origin Reaches Another Milestone: Reusable Rocket Launches and Lands Safely”

Watch SpaceX Falcon 9 Rocket Almost Stick Droneship Landing, then Tip and Explode; Video

SpaceX Falcon 9 First stage approaches center of landing droneship in Pacific Ocean. Credit: SpaceX
SpaceX Falcon 9 first stage tips over and explodes on Pacific ocean droneship after landing leg fails to lock in place on Jan 17, 2016. Credit: SpaceX
SpaceX Falcon 9 first stage tips over and explodes on Pacific ocean droneship after landing leg fails to lock in place on Jan 17, 2016. Credit: SpaceX
See landing video below

SpaceX came much closer to sticking the landing of their Falcon 9 rocket on a tiny droneship at sea than initially thought, as evidenced by a dramatic video of the latest attempt to recover the booster by making a soft ocean touchdown on Sunday, Jan. 17, after successfully propelling a US-European ocean surveillance satellite to low Earth orbit. Continue reading “Watch SpaceX Falcon 9 Rocket Almost Stick Droneship Landing, then Tip and Explode; Video”

Will 2016 Be the Year Elon Musk Reveals his Mars Colonial Transporter Plans?

Musk wants to see his "Red Dragon" on the surface of Mars within the next 20 years. Image Credit: SpaceX

There are several space stories we’re anticipating for 2016 but one story might appear — to some — to belong in the realm of science fiction: sometime in the coming year Elon Musk will likely reveal his plans for colonizing Mars.

Early in 2015, Musk hinted that he would be publicly disclosing his strategies for the Mars Colonial Transport system sometime in late 2015, but then later said the announcement would come in 2016.

“The Mars transport system will be a completely new architecture,” Musk said during a Reddit AMA in January 2015, replying to a question about the development of MCT. “[I] am hoping to present that towards the end of this year. Good thing we didn’t do it sooner, as we have learned a huge amount from Falcon and Dragon.”

Big Rockets

As far as any details, Musk only said that he wants to be able to send 100 colonists to Mars at a time, and the “goal is 100 metric tons of useful payload to the surface of Mars. This obviously requires a very big spaceship and booster system.”

He has supposedly dubbed the rocket the BFR (for Big F’n Rocket) and the spaceship similarly as BFS.

And he wants it to be reusable, which Musk and SpaceX have said is the key to making human life multiplanetary. The recent successful return and vertical landing of the Falcon 9’s first stage makes that closer to reality than ever.

While SpaceX has no publicly shared concept illustrations as of yet, a few enthusiasts on the web have shared their visions of MCT, such as this discussion on Reddit , and the drawing below by engineer John Gardi, who recently proposed his ideas for the MCT on Reddit.

A sketch shows how the top section of the Mars Colonial Transporter might be configured. Credit: John Gardi.
A sketch shows how the top section of the Mars Colonial Transporter might be configured. Credit: John Gardi.

Most online discussions describe the MCT as an interplanetary ferry, with the spaceship built on the ground and launched into orbit in one piece and perhaps refueled in low Earth orbit. The transporter could be powered by Raptor engines, which are cryogenic methane-fueled rocket engines rumored to be under development by SpaceX.

The future line-up of Falcon rockets is compared to the famous NASA Saturn V. The first Falcon Heavy launch is planned for 2015. Raptor engines may replace and upgrade Heavy then lead to Falcon X, Falcon X Heavy and Falcon XX. The Falcon X 1st stage would have half the thrust of a Saturn V, Falcon X Heavy and XX would exceed a Saturn V's thrust by nearly 50%. (Illustration Credit: SpaceX, 2010)
The future line-up of Falcon rockets is compared to the famous NASA Saturn V. The first Falcon Heavy launch is planned for 2015. Raptor engines may replace and upgrade Heavy then lead to Falcon X, Falcon X Heavy and Falcon XX. The Falcon X 1st stage would have half the thrust of a Saturn V, Falcon X Heavy and XX would exceed a Saturn V’s thrust by nearly 50%. (Illustration Credit: SpaceX, 2010)

The Challenge of Landing Large Payloads on Mars

While the big rocket and spaceship may seem to be a big hurdle, an even larger challenge is how to land a payload of 100 metric tons with 100 colonists, as Musk proposes, on Mars surface.

As we’ve discussed previously, there is a “Supersonic Transition Problem” at Mars. Mars’ thin atmosphere does not provide an enough aerodynamics to land a large vehicle like we can on Earth, but it is thick enough that thrusters such as what was used by the Apollo landers can’t be used without encountering aerodynamic problems such as sheering and incredible stress on the vehicle.

Another fan-based illustration of the modular sections of John Gardi's MCT concept sitting on the surface of Mars. Credit: George Worthington. Used by permission.
Another fan-based illustration of the modular sections of John Gardi’s MCT concept sitting on the surface of Mars. Credit: George Worthington. Used by permission.

“Unique to Mars, there is a velocity-altitude gap below Mach 5,” explained Rob Manning from the Jet Propulsion Laboratory in our article from 2007. “The gap is between the delivery capability of large entry systems at Mars and the capability of super-and sub-sonic decelerator technologies to get below the speed of sound.”

With current landing technology, a large, heavy human-sized vehicle streaking through Mars’ thin, volatile atmosphere only has about 90 seconds to slow from Mach 5 to under Mach 1, change and re-orient itself from a being a spacecraft to a lander, deploy parachutes to slow down further, then use thrusters to translate to the landing site and gently touch down.

90 seconds is not enough time, and the airbags used for rovers like Spirit and Opportunity and even the Skycrane system used for the Curiosity rover can’t be scaled up enough to land the size of payloads needed for humans on Mars.

Artist’s rendering of a hypersonic inflatable aerodynamic decelerator technology concept. Credit: NASA.
Artist’s rendering of a hypersonic inflatable aerodynamic decelerator technology concept. Credit: NASA.

NASA has been addressing this problem to a small degree, and has tested out inflatable aeroshells that can provide enough aerodynamic drag to decelerate and deliver larger payloads. Called Hypersonic Inflatable Aerodynamic Decelerator (HIAD), this is the best hope on the horizon for landing large payloads on Mars.

The Inflatable Reentry Vehicle Experiment (IRVE-3) was tested successfully in 2012. It was made of high tech fabric and inflated to create the shape and structure similar to a mushroom. When inflated, the IRVE-3 is about 10-ft (3 meter) in diameter, and is composed of a seven giant braided Kevlar rings stacked and lashed together – then covered by a thermal blanket made up of layers of heat resistant materials. These kinds of aeroshells can also generate lift, which would allow for additional slowing of the vehicle.

“NASA is currently developing and flight testing HIADs — a new class of relatively lightweight deployable aeroshells that could safely deliver more than 22 tons to the surface of Mars,” said Steve Gaddis, GCD manager at NASA’s Langley Research Center in a press release from NASA in September 2015.

NASA is expecting that a crewed spacecraft landing on Mars would weigh between 15 and 30 tons, and the space agency is looking for ideas through its Big Idea Challenge for how to create aeroshells big enough to do the job.

With current technology, landing the 100 metric tons that Musk envisions might be out of reach. But if there’s someone who could figure it out and get it done, Elon Musk just might be that person.

Additional reading: Alan Boyle on Geekwire, GQ interview of Elon Musk.

‘A City on Mars’ is Elon Musk’s Ultimate Goal Enabled by Rocket Reuse Technology

Long exposure of launch, re-entry, and landing burns of SpaceX Falcon 9 on Dec. 21, 2015. Credit: SpaceX

Elon Musk’s dream and ultimate goal of establishing a permanent human presence on the Red Planet in the form of “A City on Mars” took a gigantic step forward with the game changing rocket landing and recovery technology vividly demonstrated by his firm’s Falcon 9 booster this past Monday, Dec. 21 – following a successful blastoff from the Florida space coast just minutes earlier on the first SpaceX launch since a catastrophic mid-air calamity six months ago.

“I think this was a critical step along the way towards being able to establish a city on Mars,” said SpaceX billionaire founder and CEO Elon Musk at a media telecon shortly after Monday night’s (Dec. 21) launch and upright landing of the Falcon 9 rockets first stage on Cape Canaveral Air Force Station, Fla. Continue reading “‘A City on Mars’ is Elon Musk’s Ultimate Goal Enabled by Rocket Reuse Technology”

SpaceX Nails Perfect Return to Flight Launch and Historic Vertical Return Landing – Gallery

Long exposure of launch, re-entry, and landing burns of SpaceX Falcon 9 on Dec. 21, 2015. Credit: SpaceX

“There and back again,” said SpaceX CEO and founder Elon Musk after the amazing successful ‘Return to Flight’ launch of the firms Falcon 9 rocket and history making vertical return landing at Cape Canaveral, Fla, on Monday evening, Dec. 21.

For the first time in history, the first stage of a rocket blazing to orbit with a payload, separated successfully from the upper stage at high speed, turned around and then flew back to nail a successful rocket assisted upright touchdown back on the ground.

The upgraded “full thrust” SpaceX Falcon 9 blasted off Monday night, Dec. 21 at 8:29 p.m. from Space Launch Complex 40 on Cape Canaveral Air Force Station, Fla. carrying a constellation of ORBCOMM OG2 communications satellites to low Earth orbit.

“The Falcon Has Landed!” gushed exuberant SpaceX officials during a live webcast.

Read below what some excited eyewitnesses told Universe Today.

SpaceX Falcon 9 in final seconds of descent to successful touchdown at Landing Zone 1 on Dec 21, 2015. Credit: Dawn Taylor Leek
SpaceX Falcon 9 in final seconds of descent to successful touchdown at Landing Zone 1 on Dec 21, 2015. Credit: Dawn Leek Taylor

Accompanied by multiple shocking loud sonic booms, the 156 foot tall Falcon 9 first stage separated about 3 minutes into flight and landed successfully on the ground about 10 minutes later at the SpaceX Landing Zone 1 (LZ-1) complex at the Cape, some six miles south from pad 40.

The goal of SpaceX is to recover and eventually reuse the boosters in order to radically reduce the the cost of sending payloads and people to space, as often stated by SpaceX CEO Elon Musk.

My colleague and well known long time space photographer Julian Leek, remarked that the whole experience was fantastic!

“It was fantastic! You just would not believe the feeling,” space photographer Julian Leek told Universe Today. See his photos below.

“One of the best things I have seen since Apollo 11 liftoff!”

“It was one of the most spectacular space events I’ve seen,” said Jeff Seibert, another media photographer colleague.

“We felt like the rocket was coming down on top of us!”

Touchdown view of SpaceX Falcon 9 rocket at Landing Zone 1 at Cape Canaveral, Fla. on Dec. 21, 2015 as seen from atop Exploration Tower.  Credit: Jeff Seibert/AmericaSpace
Touchdown view of SpaceX Falcon 9 rocket at Landing Zone 1 at Cape Canaveral, Fla. on Dec. 21, 2015 as seen from atop Exploration Tower. Credit: Jeff Seibert/AmericaSpace

See the dramatic landing in this SpaceX video taken from a nearby helicopter:

“Honestly it will be something I’ll always remember!” astronomy enthusiast Carol Higgins of the Mohawk Valley Astronomical Society of Utica NY, told Universe Today.

“Seeing that thing falling so fast toward Earth, then the engine fire to slow it down, then watching it falling closer to the Cape – my heart was pounding so fast and hard I wasn’t sure what was going to happen to me LOL!”

This morning, Dec. 22, media reps were taken on a boat trip along the Cape’s Atlantic Ocean coastline past Landing Zone 1 for a birdseye view of the Falcon 9 standing upright.

Two cranes from Beyel Bros Crane and Rigging were seen hoisting and moving the Falcon 9 first stage from the vertical to horizontal position at ‘Landing Zone 1’ according to Steven M Beyel.

Post landing Ocean View of SpaceX Falcon 9 recovered first stage the day after touchdown at Landing Zone 1 on Dec 21, 2015. Credit: Dawn Leek Taylor
Post landing Ocean View of SpaceX Falcon 9 recovered first stage the day after touchdown at Landing Zone 1 on Dec 21, 2015 being hoisted by Beyel Bros cranes. Credit: Dawn Leek Taylor

The primary mission of the Falcon 9 launch was to carry a fleet of eleven small ORBCOMM OG2 commercial communications satellites to orbit on the second of two OG2 launches. All 11 satellites were successfully deployed at an altitude of about 400 mi (620 km) above Earth.

The next generation ORBCOMM OG2 satellites provide Machine – to – Machine (M2M) messaging and Automatic Identification System (AIS) services with capabilities far beyond the OG1 series.

Here’s an expanding galley of photos and video for the Dec 21, 2015 launch and landing at Cape Canaveral.

So check back later for more!

SpaceX Falcon 9 in final seconds of descent to successful touchdown at Landing Zone 1 on Dec 21, 2015. Credit: Chuck Higgins
SpaceX Falcon 9 in final seconds of descent to successful touchdown at Landing Zone 1 on Dec 21, 2015. Credit: Chuck Higgins
Up close post landing ocean view of landing legs at base of SpaceX Falcon 9 at Landing Zone 1 the day after stage touchdown at Landing Zone 1 on Dec 21, 2015 at Cape Canaveral, Fla.  Credit: Jeff Seibert/AmericaSpace
Up close post landing ocean view of landing legs at base of SpaceX Falcon 9 at Landing Zone 1 the day after stage touchdown at Landing Zone 1 on Dec 21, 2015 at Cape Canaveral, Fla. Credit: Jeff Seibert/AmericaSpace
SpaceX Falcon 9 in final seconds of descent to successful touchdown at Landing Zone 1 on Dec 21, 2015. Credit: Dawn Taylor Leek
SpaceX Falcon 9 in final seconds of descent to successful touchdown at Landing Zone 1 on Dec 21, 2015. Credit: Dawn Taylor Leek
Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015. 10  minutes later the first stage successfully landed vertically back at the Cape in a historic first time feat.   Credit: Julian Leek
Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015. 10 minutes later the first stage successfully landed vertically back at the Cape in a historic first time feat. Credit: Julian Leek

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015. 10  minutes later the first stage successfully landed vertically back at the Cape in a historic first time feat.   Credit: Julian Leek
Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015. 10 minutes later the first stage successfully landed vertically back at the Cape in a historic first time feat. Credit: Julian Leek
Falcon 9 standing on LZ-1 at Cape Canaveral post landing on Dec. 21, 2015. Credit: SpaceX
Falcon 9 standing on LZ-1 at Cape Canaveral post landing on Dec. 21, 2015. Credit: SpaceX
Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015.   First stage successfully landed vertically back at the Cape ten minutes later for the first time in history.   Credit: Ken Kremer/kenkremer.com
Blastoff of SpaceX Falcon 9 from Cape Canaveral Air Force Station on Dec. 21, 2015. First stage successfully landed vertically back at the Cape ten minutes later for the first time in history. Credit: Ken Kremer/kenkremer.com

Here’s the Dec 21 launch from my video camera placed at pad 40

SpaceX Targets Dramatic Nighttime Falcon 9 Launch and Daring Cape Canaveral Landing on Dec. 21

Artist’s concept shows SpaceX Falcon 9 first stage descending to Landing Zone 1 complex at Cape Canaveral Air Force Station, Fla. Credit: SpaceX

A “significantly upgraded” SpaceX Falcon 9 rocket stands erect on the Florida space coast today, Sunday, Dec. 20, and is poised to make history Monday evening (Dec. 21) with a spectacular nighttime blast off and daring first ever surface landing attempt of the boosters first stage at Cape Canaveral Air Force Station, that could be accompanied by sonic booms – if all goes well.

Dec 20 Update: SpaceX CEO Elon Musk has just scrubbed for the day and reset launch to Monday, Dec. 21 and story is revised.

“Just reviewed mission params w SpaceX team. Monte Carlo runs show tmrw night has a 10% higher chance of a good landing. Punting 24 hrs,” Musk tweeted. Continue reading “SpaceX Targets Dramatic Nighttime Falcon 9 Launch and Daring Cape Canaveral Landing on Dec. 21”

SpaceX Targeting Dec. 19 ‘Return to Flight’ Liftoff for Falcon 9 after June Mishap

SpaceX Falcon 9 rocket with SES-8 communications satellite awaits launch from Pad 40 at Cape Canaveral, FL, file photo. Credit: Ken Kremer/kenkremer.com

SpaceX Falcon 9 rocket after successful static hot-fire test on June 13, 2014 on Pad 40 at Cape Canaveral, FL.  Launch is slated for Friday, June 20, 2014  on ORBCOMM OG2 mission with six OG2 satellites. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket after successful static hot-fire test on June 13, 2014 on Pad 40 at Cape Canaveral, FL. Launch is slated for Friday, June 20, 2014 on ORBCOMM OG2 mission with six OG2 satellites. Credit: Ken Kremer/kenkremer.com
SpaceX announced today (Dec. 10) that the aerospace firm is now targeting Dec. 19 as the target date for the ‘Return to Flight’ of their Falcon 9 rocket, and comes approximately six months after their last launch in late June 2015 ended suddenly in a catastrophic mid-air calamity resulting in total destruction of the rocket carrying out a critical cargo mission for NASA to the International Space Station (ISS).

The Falcon 9 ‘Return to Flight’ launch attempt from Cape Canaveral, Florida was confirmed by SpaceX CEO and chief designer Elon Musk via twitter this morning.

The tentative Falcon 9 launch Continue reading “SpaceX Targeting Dec. 19 ‘Return to Flight’ Liftoff for Falcon 9 after June Mishap”

Cygnus Freighter Fueled and Loaded to Resume American Cargo Launches to Space Station

First enhanced Orbital ATK Cygnus commercial cargo ship is fully assembled and being processed for blastoff to the ISS on Dec. 3, 2015 on an ULA Atlas V rocket. This view shows the Cygnus, named the SS Deke Slayton II, and twin payload enclosure fairings inside the Kennedy Space Center clean room. Credit: Ken Kremer/kenkremer.com
First enhanced Orbital ATK Cygnus commercial cargo ship is fully assembled and being processed for blastoff  to the ISS on Dec. 3, 2015 on an ULA Atlas V rocket. This view shows the Cygnus, named the SS Deke Slayton II, and twin payload enclosure fairings inside the Kennedy Space Center clean room.   Credit: Ken Kremer/kenkremer.com
First enhanced Orbital ATK Cygnus commercial cargo ship is fully assembled and being processed for blastoff to the ISS on Dec. 3, 2015 on a ULA Atlas V rocket. This view shows the Cygnus, named the SS Deke Slayton II, and twin payload enclosure fairings inside the Kennedy Space Center clean room. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The largest and most advanced version of the privately developed Cygnus cargo freighter ever built by Orbital ATK is fueled, loaded and ready to go to orbit – signifying a critical turning point towards resuming American commercial cargo launches to the space station for NASA that are critical to keep it functioning.

The enhanced and fully assembled commercial Cygnus was unveiled to the media, including Universe Today, during an exclusive tour inside the clean room facility on Friday, Nov. 13, where it is undergoing final prelaunch processing at the Kennedy Space Center (KSC).

Blastoff of Cygnus atop a United Launch Alliance (ULA) Atlas V rocket on the OA-4 resupply mission under contract to NASA is anticipated on Continue reading “Cygnus Freighter Fueled and Loaded to Resume American Cargo Launches to Space Station”