1st Operational Cygnus Module Bound for ISS Lands at NASA Wallops Launch Site

1st operational Cygnus pressurized cargo module from Orbital Science Corp. and newly arrived from Italy sits inside high bay processing facility at NASA Wallops Flight Facility, VA. This Cygnus may launch to the ISS as early as December 2013. Credit: Ken Kremer (kenkremer.com)

NASA WALLOPS ISLAND, VA – The 1st operational Cygnus cargo spacecraft slated to ferry crucial supplies to the International Space Station (ISS) under a commercial contract with NASA, has been delivered to NASA’s Wallops Flight Facility in Virginia.

The privately built Cygnus Pressurized Cargo Module (PCM) was developed by Orbital Sciences Corp. & Thales Alenia Space under the Commercial Resupply Services (CRS) cargo transport contract with NASA.

Universe Today took an exclusive look at the unmanned Cygnus cargo carrier housed inside the high bay facility where the vehicle is being processed for flight during a visit at NASA Wallops.

This Cygnus transport vessel is scheduled to lift off atop an Antares rocket bound for the ISS from the Wallops Island launch site towards the end of this year.

Cygnus is an essential lifeline to stock the station with all manner of equipment, science experiments, food, clothing, spare parts and gear for the international crew of six astronauts and cosmonauts.

1st operational Cygnus pressurized cargo module from Orbital Sciences Corp. sits inside high bay clean room facility with crane overhead at NASA Wallops Flight Facility, VA for preflight processing.  Credit: Ken Kremer (kenkremer.com)
1st operational Cygnus pressurized cargo module from Orbital Science Corp. sits inside high bay clean room facility with crane overhead at NASA Wallops Flight Facility, VA for preflight processing. Credit: Ken Kremer (kenkremer.com)

The Cygnus PCM is manufactured by Thales Alenia Space at their production facility in Turin, Italy under a subcontract from Orbital.

The design is based on the Multi Purpose Logistic Module (MPLM) space shuttle cargo transporter.

The standard version has an internal volume of 18.9 cubic meters and can carry a total cargo mass of 2000 kg.

It was encased inside a special shipping container and flown from Italy to the US aboard an Antonov An-124 aircraft on July 17. The massive An-124 is the world’s second largest operating cargo aircraft.

After unloading from the An-124 and movement into a clean room high bay at Wallops Processing Building H-100, the shipping crate’s cover was raised using a 20 ton bridge crane. The PCM was unloaded and likewise gently craned over to an adjacent high bay work stand for flight processing.

Cygnus pressurized cargo module was loaded inside this shipping container and transported inside Antonov An-124 from Italy to NASA Wallops Flight Facility high bay processing facility and launch site in Virginia.  Credit: Ken Kremer (kenkremer.com)
Cygnus pressurized cargo module was loaded inside this shipping container and transported aboard Antonov An-124 from Italy to NASA Wallops Flight Facility high bay processing facility and launch site in Virginia. Credit: Ken Kremer (kenkremer.com)

Approximately a month and a half before launch, technicians mate the Cygnus PCM to the Service Module (SM) which houses the spacecraft’s avionics, propulsion and power systems and propels the combined vehicle to berth at the ISS.

The Cygnus SM is built by Orbital at their manufacturing facility in Dulles, VA., and shipped to Wallops for integration with the PCM in the processing building.

This particular vehicle is actually the second PCM bound for the ISS, but will be the first of eight operational cargo delivery runs to the space station over the next few years.

The first PCM to fly is set to blast-off on a Demonstration Mission (COTS 1) to the ISS in some six weeks on Sept. 14 atop Orbital’s privately developed Antares rocket. It is also in the midst of flight processing at Wallops inside a different building known as the Horizontal Integration Facility (HIF) where it is integrated with the Antares rocket.

Cygnus stored inside shipping container is unloaded from Antonov An-124 aircraft after arrival at NASA Wallops, VA on July 17, 2013. Credit:  NASA/Patrick Black
Cygnus stored inside shipping container is unloaded from Antonov An-124 aircraft after arrival at NASA Wallops, VA on July 17, 2013. Credit: NASA/Patrick Black

Orbital says the Cygnus Demo vehicle is already fueled and will be loaded with about 1550 kg of cargo for the station crew.

The purpose of the demonstration flight is to prove that the unmanned spacecraft can safely and successfully rendezvous and dock with the orbiting outpost. The flight objectives are quite similar to the initial cargo delivery test flights successfully accomplished by Orbital’s commercial rival, SpaceX.

All of Orbital’s ISS cargo resupply missions will occur from the Mid-Atlantic Regional Spaceport’s (MARS) pad 0A at Wallops.

Antares rocket awaits liftoff from Mid-Atlantic Regional Spaceport (MARS) Launch Pad 0A at NASA Wallops Flight Facility, Virginia. Credit: Ken Kremer (kenkremer.com)
Antares rocket will launch Cygnus spacecraft to the ISS from Mid-Atlantic Regional Spaceport (MARS) Launch Pad 0A at NASA Wallops Flight Facility, Virginia. Credit: Ken Kremer (kenkremer.com)

This past spring on April 21, Orbital successfully launched the 1st test flight of the Antares rocket. Read my articles here and here.

Orbital’s Antares/Cygnus system is similar in scope to the SpaceX Falcon 9/Dragon system.

Both firms won lucrative NASA contracts to deliver approximately 20,000 kilograms each of supplies and science equipment to the ISS during some 20 flights over the coming 3 to 4 years.

Cygnus spacecraft is loaded onto the Cygnus Vertical Carrier (CVC)  16-wheeled transporter to move between processing facilities at NASA’s Wallops Island launch site. Credit: Ken Kremer (kenkremer.com)
Cygnus spacecraft is loaded onto the Cygnus Vertical Carrier (CVC) 16-wheeled transporter to move between processing facilities at NASA’s Wallops Island launch site. Credit: Ken Kremer (kenkremer.com)

The goal of NASA’s CRS initiative is to achieve safe, reliable and cost-effective transportation to and from the ISS and low-Earth orbit (LEO) as a replacement for NASA’s now retired Space Shuttle Program.

Orbital’s contract with NASA for at least eight Antares/Cygnus resupply missions to the ISS is worth $1.9 Billion.

Ken Kremer

Antonov An-124 aircraft carrying Cygnus module from Italy arrives at NASA Wallops Island, VA on July 17, 2013.   Credit: NASA/Brea Reeves
Antonov An-124 aircraft carrying Cygnus module from Italy arrives at NASA Wallops Island, VA on July 17, 2013. Credit: NASA/Brea Reeves

…………….
Learn more about Cygnus, Antares, LADEE, Mars rovers and more at Ken’s upcoming lecture presentations

Aug 12: “RockSat-X Suborbital Launch, LADEE Lunar & Antares Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8 PM

SpaceX Tests Falcon 9-R Advanced Reusable Prototype Rocket

First firing of the Falcon 9-R advanced prototype rocket. Via Elon Musk on Twitter.

Over the past weekend, SpaceX fired up a new version of the Falcon 9, known as the Falcon 9-R, with “R” being for “reusable.” It was the first-ever firing their new advanced prototype rocket. SpaceX told Universe Today the hold-down firing occurred on Saturday, and it lasted for approximately 10 seconds. Elon Musk had tweeted the image above earlier this week, but the company doesn’t normally discuss testing or results, so have not said much about it.

But SpaceX’s communications director Christina Ra did tell us that the Merlin 1D engines used on the test is the same as what’s used on Grasshopper, which is the 10-story Vertical Takeoff Vertical Landing (VTVL) vehicle that SpaceX has designed to test the technologies needed to return a rocket back to Earth intact.

While the Grasshopper uses just one Merlin 1D engine, the Falcon 9-R uses nine, which Musk said via Twitter provides over 1 million pounds of thrust, “enough to lift skyscraper.”

While most rockets are designed to burn up in the atmosphere during reentry, SpaceX’s is hoping their new rocket can return to the launch pad for a vertical landing.

At the end of April Musk had shared another image of first test of the Falcon 9-R ignition system.

Word on the street is that the next test will be a full 3-minute test firing.

Here’s the Grasshopper test flight in April:

Boeing Commercial Space Taxi and Atlas V Launcher Move Closer to Blastoff

Shown is the integrated CST-100 crew capsule and Atlas V launcher model at NASA's Ames Research Center. The model is a 7 percent model of the Boeing CST-100 spacecraft, launch vehicle adaptor and launch vehicle. Credit: Boeing

The next time that American astronauts launch to space from American soil it will surely be aboard one of the new commercially built “space taxis” currently under development by a trio of American aerospace firms – Boeing, SpaceX and Sierra Nevada Corp – enabled by seed money from NASA’s Commercial Crew Program (CCP).

Boeing has moved considerably closer towards regaining America’s lost capability to launch humans to space when the firm’s privately built CST-100 crew capsule achieved two key new milestones on the path to blastoff from Florida’s Space Coast.

The CST-100 capsule is designed to carry a crew of up to 7 astronauts on missions to low-Earth orbit (LEO) and the International Space Station (ISS) around the middle of this decade.

Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing
Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing

Boeing’s crew transporter will fly to space atop the venerable Atlas V rocket built by United Launch Alliance (ULA) from Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

The Boeing and ULA teams recently completed the first wind tunnel tests of a 7 percent scale model of the integrated capsule and Atlas V rocket (photo above) as well as thrust tests of the modified Centaur upper stage.

The work is being done under the auspices of NASA’s Commercial Crew Integrated Capability (CCiCap) initiative, intended to make commercial human spaceflight services available for both US government and commercial customers, such as the proposed Bigelow Aerospace mini space station.

Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule mock-up, interior view. Credit: Ken Kremer – kenkremer.com

Since its maiden liftoff in 2002, the ULA Atlas V rocket has flawlessly launched numerous multi-billion dollar NASA planetary science missions like the Curiosity Mars rover, Juno Jupiter orbiter and New Horizons mission to Pluto as well as a plethora of top secret Air Force spy satellites.

But the two stage Atlas V has never before been used to launch humans to space – therefore necessitating rigorous testing and upgrades to qualify the entire vehicle and both stages to meet stringent human rating requirements.

“The Centaur has a long and storied past of launching the agency’s most successful spacecraft to other worlds,” said Ed Mango, NASA’s CCP manager at the agency’s Kennedy Space Center in Florida. “Because it has never been used for human spaceflight before, these tests are critical to ensuring a smooth and safe performance for the crew members who will be riding atop the human-rated Atlas V.”

The combined scale model CST-100 capsule and complete Atlas V rocket were evaluated for two months of testing this spring inside an 11- foot diameter transonic wind tunnel at NASA’s Ames Research Center in Moffett Field, Calif.

“The CST-100 and Atlas V, connected with the launch vehicle adaptor, performed exactly as expected and confirmed our expectations of how they will perform together in flight,” said John Mulholland, Boeing vice president and program manager for Commercial Programs.

Testing of the Centaur stage centered on characterizing the flow of liquid oxygen from the oxygen tank through the liquid oxygen-feed duct line into the pair of RL-10 engines where the propellant is mixed with liquid hydrogen and burned to create thrust to propel the CST-100 into orbit.

Boeing is aiming for an initial three day manned orbital test flight of the CST-100 during 2016, says Mulholland.

Artist's concept shows Boeing's CST-100 spacecraft separating from the first stage of its launch vehicle, a United Launch Alliance Atlas V rocket, following liftoff from Cape Canaveral Air Force Station in Florida. Credit: Boeing
Artist’s concept shows Boeing’s CST-100 spacecraft separating from the first stage of its launch vehicle, a United Launch Alliance Atlas V rocket, following liftoff from Cape Canaveral Air Force Station in Florida. Credit: Boeing

But that date is dependent on funding from NASA and could easily be delayed by the ongoing sequester which has slashed NASA’s and all Federal budgets.

Chris Ferguson, the commander of the final shuttle flight (STS-135) by Atlantis, is leading Boeing’s flight test effort.

Boeing has leased one of NASA’s Orbiter Processing Facility hangers (OPF-3) at the Kennedy Space Center (KSC) for the manufacturing and assembly of its CST-100 spacecraft.

Mulholland told me previously that Boeing will ‘cut metal’ soon. “Our first piece of flight design hardware will be delivered to KSC and OPF-3 around mid 2013.”

NASA’s CCP program is fostering the development of the CST-100 as well as the SpaceX Dragon and Sierra Nevada Dream Chaser to replace the crew capability of NASA’s space shuttle orbiters.

The Atlas V will also serve as the launcher for the Sierra Nevada Dream Chaser space taxi.

Since the forced retirement of NASA’s shuttle fleet in 2011, US and partner astronauts have been 100% reliant on the Russians to hitch a ride to the ISS aboard the Soyuz capsules – at a price tag exceeding $60 Million per seat.

Simultaneously on a parallel track NASA is developing the Orion crew capsule and SLS heavy lift booster to send humans to the Moon and deep space destinations including Asteroids and Mars.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Conjunctions, Mars, Curiosity, Opportunity, MAVEN, LADEE and NASA missions at Ken’s upcoming lecture presentations:

June 4: “Send your Name to Mars” and “CIBER Astro Sat, LADEE Lunar & Antares ISS Rocket Launches from Virginia”; Rodeway Inn, Chincoteague, VA, 8:30 PM

June 11: “Send your Name to Mars” and “LADEE Lunar & Antares ISS Rocket Launches from Virginia”; NJ State Museum Planetarium and Amateur Astronomers Association of Princeton (AAAP), Trenton, NJ, 730 PM.

June 12: “Send your Name to Mars” and “LADEE Lunar & Antares ISS Rocket Launches from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

NASA’s Curiosity Mars Science Laboratory  (MSL) rover blasts off for Mars atop a stunningly beautiful Atlas V  rocket on Nov. 26, 2011 at 10:02 a.m. EST from Cape Canaveral, Florida.   United Launch Alliance (ULA) is now upgrading the Atlas V to launch humans aboard the Boeing CST-100 and Sierra Nevada Dream Chaser space taxis. Credit: Ken Kremer - kenkremer.com
NASA’s Curiosity Mars Science Laboratory (MSL) rover blasts off for Mars atop a stunningly beautiful Atlas V rocket on Nov. 26, 2011 at 10:02 a.m. EST from Cape Canaveral, Florida. United Launch Alliance (ULA) is now upgrading the Atlas V to launch humans aboard the Boeing CST-100 and Sierra Nevada Dream Chaser space taxis. Credit: Ken Kremer – kenkremer.com
The CST-100 spacecraft awaits liftoff aboard an Atlas V launch vehicle in this artist's concept. Credit: Boeing
The CST-100 spacecraft awaits liftoff aboard an Atlas V launch vehicle in this artist’s concept. Credit: Boeing

Planetary Resources Looks to Crowdfund a Space Telescope for the Public

Example of an orbital 'selfie' that Planetary Resources' ARKYD telescope could provide to anyone who donates to their new Kickstarter campaign. Credit: Planetary Resources.

How much would you donate to have access to a space telescope … or just to have an orbital “selfie”? Planetary Resources, Inc., the company that wants to mine asteroids, has launched a Kickstarter campaign for the world’s first crowdfunded space telescope. They say their Arkyd-100 telescope will provide unprecedented public access to space and place the most advanced exploration technology into the hands of students, scientists and a new generation of citizen explorers.

To make their campaign successful, they need to raise $1 million in Kickstarter pledges by the end of June 2013. Less than 2 hours into their campaign, they have raised over $100,000.

Last year, Planetary Resources revealed their plans to develop a series of small spacecraft to do a little ‘space prospecting’ which would eventually allow them to mine near Earth asteroids, extracting valuable resources.

Their announcement today of the crowdfunded Arkyd-100 space telescope will allow them to begin the search for asteroid they could mine, while involving the public and providing access to to the space telescope “for inspiration, exploration and research” or have a commemorative photo of those who donate displayed above the Earth, such as the image above.

During a webcast today to announce the Kickstarter campaign, Chris Lewicki, President and Chief Engineer for Planetary Resources said the telescope would have 1 arcsecond resolution, with the benefit of being above atmosphere.

A wide array of scientists, space enthusiasts and even Bill Nye the Science Guy have voiced their support for Planetary Resources’ new public space telescope.

Artist concept of the Arkyd telescope in space. Credit: Planetary Resources Inc.
Artist concept of the Arkyd telescope in space. Credit: Planetary Resources Inc.

“The ARKYD crowdfunding campaign is extraordinary,” said Sara Seager, Ph.D., Professor of Physics and Planetary Science at the Massachusetts Institute of Technology. “Not only does the telescope have the technical capability to increase our understanding of space, but it can be placed in orbit for an incredibly low cost. That is an economic breakthrough that will accelerate space-based research now and in the future.”

The space telescope is being built by Planetary Resources’ technical team, who worked on every recent U.S. Mars lander and rover.

“I’ve operated rovers and landers on Mars, and now I can share that incredible experience with everyone,” said Lewicki. “People of any age and background will be able to point the telescope outward to investigate our Solar System, deep space, or join us in our study of near-Earth asteroids.”

Planetary Resources will use the proceeds from the Kickstarter campaign to launch the telescope, fund the creation of the public interface, cover the fulfillment costs for all of the products and services listed in the pledge levels, and fund the immersive educational curriculum for students everywhere. Any proceeds raised beyond the goal will allow for more access to classrooms, museums and science centers, and additional use by individual Kickstarter backers.

However, if they fail to reach the $1 million goal, they receive none of the money. According to Jeff Foust at the NewSpace Journal quoted Lewicki as saying, if that happens, they’ll proceed with their current plans, including development of a small prototype satellite, called Arkyd 3, that is planned for launch next year.

Here are a few of the donation levels:

• Your Face in Space – the #SpaceSelfie: For US$25, the team will upload an image of the campaign backer’s choice to display on the ARKYD, snap a photo of it with the Earth in the background, and transmit it to the backer. This space ‘photo booth’ allows anyone to take (or gift) a unique Space Selfie image that connects a personal moment with the cosmos in an unprecedented, yet tangible way.

• Explore the Cosmos: Higher pledge levels provide students, astronomers and researchers with access to the ARKYD main optic for detailed observations of the cosmos, galaxies, asteroids and our Solar System.

• Support Education Worldwide: At the highest levels, pledgers can offer the K-12 school, science center, university, or any interested group of their choice access to the ARKYD for use in interactive educational programming to strengthen STEM education worldwide. The full pledge list and ARKYD technical specifications can be found here.

See all the levels at Planetary Resources’ Kickstarter Page.

“When we launched Planetary Resources last year, we had an extraordinary response from the general public,” said Peter Diamandis, Co-Founder and Co-Chairman of Planetary Resources, Inc.. “Tens of thousands of people contacted us and wanted to be involved. We are using this Kickstarter campaign as a mechanism to engage the community in a productive way.”

During a webcast today to make their Kickstarter announcement Diamandis said, “In the last 50 years, space exploration has been led by national governmental agencies with their own set of priorities. Imagine not having to wait for Congress to decide what missions will fly!”

ARKYD Infographic

Watch Live: First Launch of Antares Rocket

1st fully integrated Antares rocket stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility on 16 April 2013. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com)



Video streaming by Ustream

UPDATE: Wednesday’s test launch for Orbital Science Corporation’s Antares rocket was aborted due to the premature disconnection of a second-stage umbilical about 12 minutes before launch was scheduled. The earliest the flight can be rescheduled is Friday, April 19.

“We are still examining all of the data, but it appears that the issue is fairly straightforward,” said Frank Culbertson, Orbital’s executive vice president and mission director for the Antares test flight, in a statement released by the company. “With this being the first launch of the new system from a new launch facility we have taken prudent steps to ensure a safe and successful outcome. Today, our scrub procedures were exercised and worked as planned. We are looking forward to a successful launch on Friday.”

[end of update]

It’s been billed as “the biggest, loudest and brightest rocket ever to launch from NASA’s Wallops Flight Facility” in Virginia, and the commercial company Orbital Sciences Corporation is ready to send their Antares rocket on its maiden test flight. Orbital is testing Antares under NASA’s Commercial Orbital Transportation Services (COTS) program, and the rocket will send a dummy module into orbit that has the same mass as Orbital’s Cygnus cargo spacecraft, as well as a few smaller satellites, testing the rocket’s capabilities.

You can watch live here via NASA TV’s Ustream. There is a press briefing at 2 pm EDT (18:00 UTC), and launch coverage starts at 4:00 pm EDT (20:00 UTC), with the launch window open between 5 and 8 pm EDT (21:00 and midnight UTC).

This will mark not only the first launch of Antares, but the first orbital launch of a liquid-fueled rocket from Wallops. If all goes well with this flight, Orbital will carry out a full flight demonstration of Antares and the Cygnus cargo delivery system to the International Space Station around mid-2013.

If you live along the Eastern Seaboard of the US, here’s great information on how you might be able to see the launch, and here’s our article with more info on the flight.

Antares Rocket Erected at Virginia Pad for Inaugural April 17 Launch – Photo Gallery

1st fully integrated Antares rocket stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility during exclusive launch complex tour by Universe Today. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com) See Antares rollout and erection photo gallery below

1st fully integrated Antares rocket – decaled with huge American flag – stands firmly erect at seaside Launch Pad 0-A at NASA’s Wallops Flight Facility on 6 April 2013 following night time rollout. Maiden Antares test launch is scheduled for 17 April 2013. Later operational flights are critical to resupply the ISS. Credit: Ken Kremer (kenkremer.com).
See Antares rollout and erection photo gallery below[/caption]

For the first time ever, the new and fully integrated commercial Antares rocket built by Orbital Sciences was rolled out to its oceanside launch pad on a rather chilly Saturday morning (April 6) and erected at the very edge of the Eastern Virginia shoreline in anticipation of its maiden launch slated for April 17.

The inaugural liftoff of the privately developed two stage rocket is set for 5 p.m. from the newly constructed launch pad 0-A at the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility in Virginia.

And Universe Today was there! See my photo gallery herein.

Antares is the most powerful rocket ever to ascend near major American East Coast population centers, unlike anything before. The launch is open to the public and is generating buzz.

And this is one very cool looking rocket.

Antares rocket begins 1st ever rollout from processing hanger to NASA Wallops launch pad - beneath the Moon on 6 April 2013.  Credit: Ken Kremer (kenkremer.com)
Antares rocket begins 1st ever rollout from processing hanger to NASA Wallops launch pad – beneath the Moon on 6 April 2013. Credit: Ken Kremer (kenkremer.com)

The maiden April 17 launch is actually a test flight dubbed the A-One Test Launch Mission.

The goal of the A-One mission is to validate that Antares is ready to launch Orbital‘s Cygnus capsule on a crucial docking demonstration and resupply mission to the International Space Station (ISS) as soon as this summer.

The 1 mile horizontal rollout trek of the gleaming white rocket from the NASA integration hanger to the pad on a specially designed trailer began in the dead of a frosty, windy night at 4:30 a.m. – and beneath a picturesque moon.

“We are all very happy and proud to get Antares to the pad today for the test flight,” Orbital ground operations manager Mike Brainard told Universe Today in an interview at Launch Complex 0-A.

The rocket was beautifully decaled with a huge American flag as well as the Antares, Cygnus and Orbital logos.

Raising Antares at NASA Wallops. Credit: Ken Kremer (kenkremer.com)
Raising Antares at NASA Wallops. Credit: Ken Kremer (kenkremer.com)

Antares was transported aboard the Transporter/Erector/Launcher (TEL), a multifunctional, specialized vehicle that also slowly raised the rocket to a vertical position on the launch pad a few hours later, starting at about 1 p.m. under clear blue skies.

This first ever Antares erection took about 30 minutes. The lift was postponed for several hours after arriving at the pad as Orbital personal monitored the continually gusting winds approaching the 29 knot limit and checked all pad and rocket systems to insure safety.

The TEL vehicle also serves as a support interface between the 133-foot Antares and the range of launch complex systems.

Antares transported atop aboard the Transporter/Erector/Launcher (TEL) beneath the Moon on 6 April 2013.  Credit: Ken Kremer (kenkremer.com
Antares transported atop aboard the Transporter/Erector/Launcher (TEL) beneath the Moon on 6 April 2013. Credit: Ken Kremer (kenkremer.com

Now that Antares stands vertical, “We are on a clear path to a launch date of April 17, provided there are no significant weather disruptions or major vehicle check-out delays between now and then,” said Mr. Michael Pinkston, Orbitals Antares Program Manager.

Antares is a medium class rocket similar to the Delta II and SpaceX Falcon 9.

For this test flight Antares will boost a simulated version of the Cygnus carrier – known as a mass simulator – into a target orbit of 250 x 300 kilometers and inclined 51.6 degrees.

Antares rolls up the ramp to Launch Complex 0-A at NASA’s Wallops Flight Facility on 6 April 2013. Credit: Ken Kremer (kenkremer.com)
Antares rolls up the ramp to Launch Complex 0-A at NASA’s Wallops Flight Facility on 6 April 2013. Credit: Ken Kremer (kenkremer.com)

The Antares first stage is powered by dual liquid fueled AJ26 first stage rocket engines that generate a combined total thrust of some 680,000 lbs. The upper stage features a Castor 30 solid rocket motor with thrust vectoring. Antares can loft payloads weighing over 5000 kg to LEO.

The Antares/Cygnus system was developed by Orbital Sciences Corp under NASA’s Commercial Orbital Transportation Services (COTS) program to replace the ISS cargo resupply capability previously tasked to NASA’s now retired Space Shuttle fleet.

Up Close with Antares beautifully decaled nose NASA Wallops Pad 0-A. Credit: Ken Kremer (kenkremer.com)
Up Close with Antares beautifully decaled nose at NASA Wallops Pad 0-A. Credit: Ken Kremer (kenkremer.com)

Orbital’s Antares/Cygnus system is similar in scope to the SpaceX Falcon 9/Dragon system. Both firms won lucrative NASA contracts to deliver approximately 20,000 kilograms of supplies and equipment to the ISS.

The goal of NASA’s COTS initiative is to achieve safe, reliable and cost-effective transportation to and from the ISS and low-Earth orbit (LEO).

Orbital will launch at least eight Antares/Cygnus resupply missions to the ISS at a cost of $1.9 Billion

The maiden Antares launch has been postponed by about 2 years due to delays in laiunch pad construction and validating the rocket and engines for flight- similar in length to the start up delays experienced by SpaceX for Falcon 9 and Dragon.

Read my prior Antares story detailing my tour of the launch complex following the successful 29 sec hot-fire engine test that cleared the path for the April 17 liftoff – here & here.

Watch for my continuing reports through liftoff of the Antares A-One Test flight.

Ken Kremer

…………….

Learn more about Antares, SpaceX, Curiosity and NASA missions at Ken’s upcoming lecture presentations:

April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus Orion, SpaceX, Antares, the Space Shuttle and more! NEAF Astronomy Forum, Suffern, NY

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM

Only a few hundred feet of beach sand and a  low sea wall separate the pad from the Atlantic Ocean and Mother Nature and potential catastrophe. Credit: Ken Kremer (kenkremer.com
Only a few hundred feet of beach sand and a low sea wall separate the Wallops Island pad from the Atlantic Ocean and Mother Nature and potential catastrophe. Credit: Ken Kremer (kenkremer.com)
Thumbs Up for Antares ! - from NASA Wallops Media team and Space journalists.  Ken at right. Credit: Ken Kremer (kenkremer.com)
Thumbs Up for Antares ! – from NASA Wallops Media team and Space journalists. Ken at right. Credit: Ken Kremer (kenkremer.com)

How the Air Force and SpaceX Saved Dragon from Doom

This grappling of the SpaceX Dragon capsule on March 3, 2013 by the space station robotic arm nearly didn’t happen when a thruster failure just minutes after the March 1 liftoff nearly doomed the mission. Credit: NASA

The picture perfect docking of the SpaceX Dragon capsule to the International Space Station (ISS) on March 3 and the triumphant ocean splashdown last week on March 26 nearly weren’t to be – and it all goes back to a microscopic manufacturing mistake in the oxidizer tank check valves that no one noticed long before the vessel ever took flight.

Barely 11 minutes after I witnessed the spectacular March 1 blastoff of the Dragon atop the SpaceX Falcon 9 rocket from Cape Canaveral, Florida, everyone’s glee suddenly turned to disbelief and gloom with the alarming news from SpaceX Mission Control that contact had been lost.

I asked SpaceX CEO and founder Elon Musk to explain what caused the failure and how they saved the drifting, uncontrolled Dragon capsule from doom – just in the nick of time.

Applying the space version of the Heimlich maneuver turned out to be the key. But if you can’t talk to the patient – all is lost.

dragonRight after spacecraft separation in low Earth orbit , a sudden and unexpected failure of the Dragon’s critical thrust pods had prevented three out of four from initializing and firing. The oxidizer pressure was low in three tanks. And the propulsion system is required to orient the craft for two way communication and to propel the Dragon to the orbiting lab complex.

So at first the outlook for the $133 million Dragon CRS-2 cargo resupply mission to the ISS appeared dire.

Then, SpaceX engineers and the U.S Air Force sprang into action and staged an amazing turnaround.

“The problem was a very tiny change to the check valves that serve the oxidizer tanks on Dragon.” Musk told Universe Today

“Three of the check valves were actually different from the prior check valves that had flown – in a very tiny way. Because of the tiny change they got stuck.”

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

SpaceX engineers worked frantically to troubleshoot the thruster issues in an urgent bid to overcome the serious glitch and bring the crucial propulsion systems back on line.

“What we did was we were able to write some new software in real time and upload that to Dragon to build pressure upstream of the check valves and then released that pressure- to give it a kind of a kick,” Musk told me at a NASA media briefing.

“For the spacecraft you could call it kind of a Heimlich maneuver. Basically that got the valves unstuck and then they worked well”

“But we had difficulty communicating with the spacecraft because it was in free drift in orbit.”

“So we worked closely with the Air Force to get higher intensity, more powerful dishes to communicate with the spacecraft and upload the software to do the Heimlich pressure maneuver.”

Schematic of SpaceX Dragon. Credit: SpaceX
Schematic of SpaceX Dragon. Credit: SpaceX

Just how concerned was Musk?

“Yes, definitely it was a worrying time,” Musk elaborated.

“It was a little frightening,” Musk had said right after the March 1 launch.

Later in the briefing Musk explained that there had been a small design change to the check valves by the supplier.

“The supplier had made mistakes that we didn’t catch,” said Musk. “You would need a magnifying glass to see the difference.”

SpaceX had run the new check valves through a series of low pressurization systems tests and they worked well and didn’t get stuck. But SpaceX had failed to run the functional tests at higher pressures.

“We’ll make sure we don’t repeat that error in the future,” Musk stated.

Musk added that SpaceX will revert to the old check valves and run tests to make sure this failure doesn’t happen again.

SpaceX, along with Orbital Sciences Corp, are both partnered with NASA’s Commercial Resupply Services program to replace the cargo up mass capability the US lost following the retirement of NASA’s space shuttle orbiters in 2011.

Orbital’s Antares rocket could blast off on its first test mission as early as April 17.

Of course the Dragon CRS-2 flight isn’t the first inflight space emergency, and surely won’t be the last either.

So, for some additional perspective on the history of reacting to unexpected emergencies in space on both human spaceflight and robotic science probes, Universe Today contacted noted space historian Roger Launius, of the Smithsonian National Air & Space Museum (NASM).

Roger provided these insights to Universe Today editor Nancy Atkinson – included here:

“There are many instances in the history of spaceflight in which the mission had difficulties that were overcome and it proved successful,” said Launius.

“Let’s start with Hubble Space Telescope which had a spherical aberration on its mirror and the first reports in 1990 were that it would be a total loss, but the engineers found workarounds that allowed it to be successful even before the December 1993 servicing mission by a shuttle crew that really turned it into a superb scientific instrument.”

“Then what about Galileo, the Jupiter probe, which had a problem with its high gain antenna. It never did fully deploy but the engineers found ways to overcome that problem with the communication system and the spacecraft turned into a stunning success.”

“If you want to feature human spaceflight let’s start with the 1999 shuttle flight with Eileen Collins as commander that had a shutdown of the SSMEs prematurely and it failed to reach its optimum orbit. It still completed virtually all of the mission requirements.”

“That says nothing about Apollo 13,… I could go on and on. In virtually every mission there has been something potentially damaging to the mission that has happened. Mostly the folks working the mission have planned for contingencies and implement them and the public rarely hears about it as it looks from the outside like a flawless operation.”

“Bottom line, the recovery of the Dragon capsule was not all that amazing. It was engineers in the space business doing what they do best,” said Launius.

Ken Kremer

…………….

Learn more about SpaceX, Antares, Curiosity and NASA missions at Ken’s upcoming lecture presentations:

April 20/21 : “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus Orion, SpaceX, Antares, the Space Shuttle and more! NEAF Astronomy Forum, Suffern, NY

April 28: “Curiosity and the Search for Life on Mars – (in 3-D)”. Plus the Space Shuttle, SpaceX, Antares, Orion and more. Washington Crossing State Park, Titusville, NJ, 130 PM

SpaceX Falcon 9 rocket and Dragon capsule poised to blast off from Cape Canaveral Air Force Station, Florida on a commercial resupply mission to the ISS. Credit: Ken Kremer/www.kenkremer.com

Gallery: Dragon Splashes Down Successfully

Dragon is slowed by three main parachutes prior to splashdown into the Pacific Ocean. Credit: SpaceX.

Splashdown! The SpaceX Dragon has returned home safely, splashing down in the Pacific Ocean at 16:36 UTC (12:36 p.m. EDT) on Tuesday, March 26, 2013. “Recovery ship has secured Dragon,” Tweeted SpaceX CEO Elon Musk. “Powering down all secondary systems. Cargo looks A-OK.”

A team of SpaceX engineers, technicians and divers will recover the vehicle off the coast of Baja, California, for the journey back to shore, which NASA said will take 30-48 hours.

The big job will be unloading the 3,000- plus pounds (1,360 kg) of ISS cargo and packaging inside the spacecraft. The Dragon is currently the only vehicle capable of returning cargo and important scientific experiments back to Earth.

“The scientific research delivered and being returned by Dragon enables advances in every aspect of NASA’s diverse space station science portfolio, including human research, biology and physical sciences,” said Julie Robinson, International Space Station Program
scientist. “There are more than 200 active investigations underway aboard our orbiting laboratory in space. The scientific community has
eagerly awaited the return of today’s Dragon to see what new insights the returned samples and investigations it carries will unveil.”

See more images below of Dragon’s return and mission to the ISS; we’ll be adding more as the SpaceX team supplies them!

Here’s a gif image of the splashdown:

A series of images shows the Dragon splashdown. Credit: SpaceX.
A series of images shows the Dragon splashdown. Credit: SpaceX.
This picture captures the Dragon just as it hits the water in the Pacific Ocean. Credit: SpaceX.
This picture captures the Dragon just as it hits the water in the Pacific Ocean. Credit: SpaceX.
Dragon was released from the International Space Station on March 26, 2013 during the CRS-2 mission. Credit: SpaceX.
Dragon was released from the International Space Station on March 26, 2013 during the CRS-2 mission. Credit: SpaceX.

Dragon’s release from Canadarm2 occurred earlier today at 10:56 UTC. The Expedition 35 crew commanded the spacecraft to slowly depart from the International Space Station

Dragon attached to the International Space Station during the CRS-2 mission. Credit: NASA.
Dragon attached to the International Space Station during the CRS-2 mission. Credit: NASA.
Dragon in orbit during the CRS-2 mission. Credit: NASA/CSA/Chris Hadfield
Dragon in orbit during the CRS-2 mission. Credit: NASA/CSA/Chris Hadfield

Among the the scientific experiment returned on Dragon was the Coarsening in Solid-Liquid Mixtures (CSLM-3) experiment, which also launched to space aboard this Dragon. CLSM-3 studies how crystals known as dendrites form as a metal alloy becomes solid. The research could help engineers develop stronger materials for use in automobile, aircraft and spacecraft parts.

Dragon also is returning several human research samples that will help scientists continue to examine how the human body reacts to long-term spaceflight. The results will have implications for future space exploration and direct benefits here on Earth.

The mission was the second of at least 12 cargo resupply trips SpaceX plans to make to the space station through 2016 under NASA’s
Commercial Resupply Services contract.

Berth of a Dragon after Thruster Failure Recovery Establishes American Lifeline to ISS

SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA

Kennedy Space Center – After overcoming a frightening thruster failure that could have spelled rapid doom on the heels of a breathtakingly beautiful launch, the privately developed Dragon spacecraft successfully berthed at the International Space Station (ISS) a short while ago, at 8:56 a.m. EST Sunday morning, March 3, 2013 – thereby establishing an indispensable American Lifeline to the massive orbiting lab complex.

Hearts sank and hopes rose in the span of a few troubling hours following Friday’s (Mar. 1) flawless launch of the Dragon cargo resupply capsule atop the 15 story tall Falcon 9 rocket from Cape Canaveral Air Force Station, Florida and the initial failure of the life giving solar arrays to deploy and failure of the maneuvering thrusters to fire.

“Congrats to the @NASA/@SpaceX team. Great work getting #Dragon to the #ISS…our foothold for future exploration!” tweeted NASA Deputy Administrator Lori Garver.

Space station Expedition 34 crew members Kevin Ford and Tom Marshburn of NASA used the station’s 58 foot long Canadian supplied robotic arm to successfully grapple and capture Dragon at 5:31 a.m. Sunday as the station was flying 253 miles above northern Ukraine. See the grappling video – here.

SpaceX Dragon holding at 10m capture point. ISS crew standing by for "go" to perform grapple. Credit: NASA
SpaceX Dragon holding at 10m capture point. ISS crew standing by for “go” to perform grapple. Credit: NASA

“The vehicle’s beautiful, space is beautiful, and the Canadarm2 is beautiful too”, said station commander Kevin Ford during the operation.

The capsule pluck from free space came one day, 19 hours and 22 minutes after the mission’s launch.

Ground controllers at NASA’s Johnson Space Center in Houston then commanded the arm to install Dragon onto the Earth-facing port of the Harmony module – see schematic.

Schematic shows location of Dragon docking port for CRS-2 mission and ISS modules. Credit: NASA
Schematic shows location of Dragon docking port for CRS-2 mission and ISS modules. Credit: NASA

Originally, Dragon capture was slated only about 20 hours after launch. But that all went out the window following the serious post-launch anomalies that sent SpaceX engineers desperately scrambling to save the flight from a catastrophic finale.

The $133 million mission dubbed CRS-2 is only the 2nd contracted commercial resupply mission ever to berth at the ISS under NASA’s Commercial Resupply Services (CRS) contract. The contract is worth $1.6 Billion for at least a dozen resupply flights.

Following the forced retirement of NASA’s space shuttle orbiters in July 2011, American was left with zero capability to launch either cargo or astronauts to the primarily American ISS. NASA astronauts are 100% reliant on Russian Soyuz capsules for launch to the ISS.

Both the Falcon 9 rocket and Dragon spacecraft were designed and built by SpaceX Corporation based in Hawthorne, Calif., and are entirely American built.

The Falcon 9/Dragon commercial system restores America’s unmanned cargo resupply capability. But the time gap will be at least 3 to 5 years before American’s can again launch to the ISS aboard American rockets from American soil.

And continuing, relentless cuts to NASA’s budget are significantly increasing that human spaceflight gap and consequently forces more payments to Russia.

“Today we marked another milestone in our aggressive efforts to make sure American companies are launching resupply missions from U.S. shores,” said NASA Admisistrator Charles Bolden in a NASA statement.

“Our NASA-SpaceX team completed another successful berthing of the SpaceX Dragon cargo module to the International Space Station (ISS) following its near flawless launch on the Falcon-9 booster out of Cape Canaveral, Florida Friday morning. Launching rockets is difficult, and while the team faced some technical challenges after Dragon separation from the launch vehicle, they called upon their thorough knowledge of their systems to successfully troubleshoot and fully recover all vehicle capabilities. Dragon is now once again safely berthed to the station.”

“I was pleased to watch the launch from SpaceX’s facility in Hawthorne, CA, and I want to congratulate the SpaceX and NASA teams, who are working side by side to ensure America continues to lead the world in space.”

“Unfortunately, all of this progress could be jeopardized with the sequestration ordered by law to be signed by the President Friday evening. The sequester could further delay the restarting of human space launches from U.S. soil, push back our next generation space vehicles, hold up development of new space technologies, and jeopardize our space-based, Earth observing capabilities,” said Bolden.

ISS crew given GO for second stage capture of SpaceX Dragon with ISS on March 3, 2013.  Credit: NASA
ISS crew given GO for second stage capture of SpaceX Dragon with ISS on March 3, 2013. Credit: NASA

Dragon is loaded with about 1,268 pounds (575 kilograms) of vital supplies and provisions to support the ongoing science research by the resident six man crew, including more than a ton of vital supplies, science gear, research experiments, spare parts, food, water and clothing.

NASA says that despite the one-day docking delay, the Dragon unberthing will still be the same day as originally planned on March 25 – followed by a parachute assisted splashdown in the Pacific Ocean off the coast of Baja California.

Dragon will spend 22 days docked to the ISS. The station crew will soon open the hatch and unload all the up mass cargo and research supplies. Then they will pack the Dragon with about 2,668 pounds (1,210 kilograms) of science samples from human research, biology and biotechnology studies, physical science investigations, and education activities for return to Earth.

Canadian built robotic arm grapples SpaceX Dragon on March 3, 2013.  Credit:
Canadian built robotic arm grapples SpaceX Dragon on March 3, 2013. Credit:

Dragon is the only spacecraft in the world today capable of returning significant amounts of cargo to Earth.

Orbital Sciences Corp also won a $1.9 Billion cargo resupply contract from NASA to deliver cargo to the ISS using the firm’s new Antares rocket and Cygnus capsule.

NASA hopes the first Antares/Cygnus demonstration test flight from NASA’s Wallops Island Facility in Virginia will follow in April. Cygnus cargo transport is one way – to orbit only.

“SpaceX is proud to execute this important work for NASA, and we’re thrilled to bring this capability back to the United States,” said Gwynne Shotwell, President of SpaceX.

“Today’s launch continues SpaceX’s long-term partnership with NASA to provide reliable, safe transport of cargo to and from the station, enabling beneficial research and advancements in technology and research.”

The SpaceX CRS-3 flight is slated to blast off in September 2013.

Ken Kremer

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 ISS - shot from the roof of the Vehicle Assembly Building.  .  Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

Dragon Launches Successfully, But Suffers Anomaly After Reaching Orbit

Dragon launches on the SpaceX Falcon 9 on March 1, 2013. Credit: John O'Connor/nasatech

Just after 10 am Eastern time, the SpaceX successfully launched their Dragon capsule on a second resupply mission to the International Space Station. The launch, rocket stage and spacecraft separations went perfectly, but the Dragon experienced an anomaly at about the time the solar arrays should have deployed. The SpaceX webcast announced that the spacecraft experienced a problem and then ended the webcast. NASA TV has not offered information either. We’ll provide more information as soon it becomes available.

Update: (10:44 EST) Elon Musk, SpaceX CEO just tweeted: “Issue with Dragon thruster pods. System inhibiting 3 of 4 from initializing. About to inhibit override.” Then minutes later he added, “Holding on solar array deployment until at least two thruster pods are active.”

See below for a continuation of our live-blogging of the Dragon anomaly, as it happened..

Also, here’s the launch video from launch to separation (note, the separation video is spectacular!):

Dragon carries 18 Draco thrusters for attitude control and maneuvering, so there may be an issue with those. Dragon’s thruster problem may be preventing the spacecraft from going into array deploy attitude, thus preventing array deploy.

Only time will tell if this is a software or hardware problem. The SpaceX press kit describes what needs to happen for solar array deploy:

Dragon separates from Falcon 9’s second stage, and seconds later, Dragon will reach its preliminary orbit. It then deploys its solar arrays and begins a carefully choreographed series of Draco thruster firings to reach the space station.

If Dragon can’t make it to the ISS, then it would need to be decided if and how it can return back to Earth on a good trajectory with limited thruster control.

The SpaceX controllers are obviously working to try and resolve the problem.

Update: 11:10 EST An update from NASA TV at about 11:10 am, said that part of response to problem with Dragon may be reorganizing the burn sequences in order for the spacecraft to be able to approach to the ISS. Musk just tweeted: “About to pass over Australia ground station and command inhibit override.”

Update: 11:25 EST: A statement from SpaceX says that “One thruster pod is running. Two are preferred to take the next step which is to deploy the solar arrays. We are working to bring up the other two in order to plan the next series of burns to get to station.”

Update: 11:42 EST: Elon Musk just tweeted: “Thruster pod 3 tank pressure trending positive. Preparing to deploy solar arrays.” That is good news.

Update: 11:50 EST: Another Tweet from Musk, with some short but sweet news: “Solar array deployment successful” That means they were abe to get at least two of the four thruster pods working, per the minimum requirement. Now, to see if the thruster problem causes any issues with getting to the ISS.

Update: 12:05 EST: Elon Musk continues to be the best source of info. He’s just tweeted, “Attempting bring up of thruster pods 2 and 4.”
We’re assuming that means 1 and 3 are already working, since it was going to take at least 2 pods thrusting to enable solar array deploy.

Update: 12:14 EST: The latest statement from SpaceX : “After Dragon achieved orbit, the spacecraft experienced an issue with a propellant valve. One thruster pod is running. We are trying to bring up the remaining three. We did go ahead and get the solar arrays deployed. Once we get at least 2 pods running, we will begin a series of burns to get to station.”

So, they were able to deploy the arrays with just one thruster pod working, and they are now working to get at least one more working. One question to consider is if the spacecraft and arrays were able to be in the right position to gather sunlight and produce power.

Update: 12:42 EST: According to reports on Twitter, a NASA official has said that three Dragon thruster pods are needed to fly to the ISS, and at this point, only one pod is working.

SpaceX CRS-2 Launch on March 1, 2013. Credit: John O'Connor/nasatech
SpaceX CRS-2 Launch on March 1, 2013. Credit: John O’Connor/nasatech

Update: 2:00 EST: This update from SpaceX: “SpaceX is still working through issues in Dragon’s propulsion system. The mission’s first rendezvous burn was delayed at least one orbit to about 2 p.m. EST.” (which is now)….stay tuned for updates. There will be a press conference sometime today, NASA has said, but has not yet set a specific time.

Update: 2:28 EST: NASA says the Dragon capsule Dragon will no longer be able to make its scheduled rendezvous with the station tomorrow. SpaceX indicated the rendezvous with the ISS will now not happen until at least Sunday morning. There will be a news briefing at 3pm EST.

Communication between the ISS crew and mission control confirms the delay for the rendezvous: “They are making progress recovering their prop system, but it’s not going to be in time to support the rendezvous and capture for tomorrow,” NASA’s spacecraft communicator told the crew. “So that is not going to happen tomorrow.”

“OK, copy, sounds like another off-duty day for us,” said ISS commander Kevin Ford. “We don’t wish that. We wish it gets fixed and gets up here to us. That’s really awesome they’re working their way through the problems. That’s what it’s all about.”

Update: 2:58 EST: Latest Tweet from Elon Musk has good news: “Pods 1 and 4 now online and thrusters engaged. Dragon transitioned from free drift to active control. Yes!!”

Update: 4:11 EST: Here’s a brief synopsis of the press briefing:

During the press conference, Elon Musk indicated there was a blockage in the helium line leading to the oxidizer pressurization system, or perhaps a stuck valve, and the pressure was not high enough to turn on the thrusters. The engineering team cycled the valves several times, using pressure hammering to loosen up and debris that might be stuck in the valves. And now, the pressure is nominal, with all the oxidizer tanks holding the target pressure on all 4 pods, and so Musk said he is hopeful that all the thrusters will be able to work.

Musk said they decided to deploy Dragon arrays before two thrusters were online because the temperature of the array actuators was dropping rapidly. But they also deployed solar arrays partly to mitigate Dragon’s attitude rotation “like a skater extending arms during a spin,” he said.

Musk mentioned the batteries on board had 12-14 hours of life, so deploying the arrays early was not a question of running out of power, but making sure solar arrays didn’t get so cold that they couldn’t deploy later.

NASA’s Mike Suffredini said that at least 3 of the 4 pods have to be operational in order to make an approach to the ISS.

They will make a decision on when to make the rendezvous when they’ve ascertained if the thrusters are working.

Ken Kremer will provide a more detailed update later.

{End of live blogging}

Diagram of the Dragon capsule. Credit: SpaceX
Diagram of the Dragon capsule. Credit: SpaceX

The Dragon is carrying 544 kilograms (1,200 lbs) of scientific experiments and supplies to the space station, and docking was scheduled for Saturday at 6:30 a.m. ET (1100 GMT). That will likely change.

Dragon’s 18 Draco thrusters permit orbital maneuvering and attitude control. They are mounted on four pods: two of the pods contain five thrusters and the other two contain four thrusters. They are powered by nitrogen tetroxide/monomethylhydrazine, and the thrust is used to control the approach to the ISS, power departure from the ISS, and control Dragon’s attitude upon reentry.

As far as the solar arrays, each array is constructed of four panels. Each array measures 6.4 meters (21 feet). The arrays can draw up to 5,000 watts of power, which is about enough power to light about 85 light bulbs. For launch, the arrays are stowed in the unpressurized trunk of the Dragon and are covered by protective fairings. When the fairings jettison, the automated deployment of the arrays is triggered. On the way back to Earth the trunk is jettison and it, along with the arrays, burn up in the atmosphere.

If the arrays do not deploy, battery life on Dragon is only a few hours 12-14 hours, which would not be enough time to keep it alive until it would reach the ISS. It will be about 20 hours from launch until it approaches the ISS, if the mission continues on its scheduled timeline.

You may recall that during the previous mission to the ISS in October 2012 (the second flight to ISS, but first operational SpaceX resupply flight) one of the rocket’s first stage engines suffered an anomaly, where a combustion chamber ruptured. That engine was shut down, and the other engines fired longer to make up for it. The Dragon cargo made it to the correct orbit and continued on the ISS, but a satellite that was launched to orbit as a secondary payload by the Falcon 9 rocket was sent into the wrong orbit as a result of “a pre-imposed safety check required by NASA,” on October 7, and the ORBCOMM OG2 satellite later deorbited and fell back to Earth.

For this launch, all nine engines appeared to work nominally and all stages separated perfectly.

But obviously the SpaceX team saw the thruster problem immediately, as that’s when the webcast was ended.