The southern constellation of Phoenix was one of twelve created by Petrus Plancius from the observations of Dutch navigators, Pieter Dirkszoon Keyser and Frederick de Houtman. It first appeared on celestial globe published in the late 1500s and was first depicted in a celestial atlas by Johann Bayer in 1603. Phoenix resides south of the ecliptic plane and covers approximately 469 square degrees of sky, ranking 37th in size. It contains 4 main stars in its asterism and has 25 Bayer Flamsteed designated stars within its confines. Phoenix is bordered by the constellations of Sculptor, Grus, Tucana, Hydrus, Eridanus and Fornax. It is visible to observers located at latitudes between +32° and ?90° and is best seen when it reaches culmination during the month of November.
There is one annual meteor shower associated with the constellation of Phoenix which peaks on or about December 5 of each year – the Phoenicids. The appearance of the meteor was observed by the corps of the first South Pole passing the winter in South Pole observation ship Soya, Japan while toward in 1956 the South Pole it until about 13:45 to 18:00 at the world. The meteor shower is considered to be new and understudied, so there is no predicted fall rate – nor is there an established peak date. The Phoenicids are associated with the comet D/1819 W1 (Blanpain). The comet was observed in 1819 and was missing. However, it turned out that the asteroid 2003 WY25 discovered in 2003 was the same as this comet in 2005. The duration of this shower extends from November 29 to December 9.
Because Phoenix is considered a “new” constellation, there is no mythology associated with it. It is named after the legendary bird which rose from its own ashes. The bird was also said to regenerate when hurt or wounded by a foe, thus being almost immortal and invincible – it is also said that it can heal a person with a tear from its eyes and make them temporarily immune to death; It is a symbol of fire and divinity – also representing the rising and setting of the Sun.
Let’s begin our binocular tour of Phoenix with its brightest star – Alpha – the “a” symbol on our map. Located about 77 light years from Earth, Alpha Phoenicis goes by the traditional name of Ankaa – “the bright one of the boat”. Ankaa is an orange giant star about in the mid-life of its helium burning phase of its stellar evolution. If it continues to behave normally, it will eventually sheds its outer layers in a planetary nebula and ends its life quietly as a white dwarf star. It is known that Ankaa is a double star and has a small stellar companion, but currently little to nothing is known about the companion.
Now, point your telescope at Beta – the “B” symbol on our map. Beta Phoenicis is beautiful, bright yellow double-star is only 1.4 arc seconds in separation, with a position angle of 346 degrees. Other than a companion, it’s a very typical K type star.
How about Gamma the figure “8” symbol? Turn binoculars its way. Located 235 light years away, this rare M-class giant star that puts out 575 times more light than Sol at a very cool 3900 degrees Kelvin. Gamma is evolving a lot faster than our own Sun, passing through a stage where it is an irregular variable star and heading towards being a K-type giant star. Although we know little else, we do know Gamma has a spectroscopic companion, making it a true binary star.
Aim your telescope about 2 degrees northeast of Gamma for NGC 265 (RA 1:35.1 Dec -41:26). At magnitude 12, this fairly small galaxy isn’t going to set any records, but you’ll pick up an elongated form with a bright nucleus. If you see patchy structure in this spiral galaxy, there’s good reason… It’s a Starburst Galaxy!
For a big telescope challenge, try your luck with Abell Galaxy Cluster 2870. Of this galaxy group, the brightest is IC 1625 (RA 01:07:42.4 Dec -46:54:27) and we’re looking at approximately magnitude 13 and about 2 arc minutes in size. It wouldn’t be a challenge if it were easy!
Positioned directly on the ecliptic plane, Leo is a constellation of the zodiac preceded by Cancer to the west and followed by Virgo to the east. It is an ancient constellation, originally charted by Ptolemy and recognized by the International Astronomical Union as one of the 88 modern constellations. Leo spans 947 square degrees of sky and is the twelfth largest of all. It contains 3 bright stars and around 15 stars in its asterism, with 92 Bayer/Flamsteed designated stars within its confines. It is bordered by the constellations of Ursa Major, Leo Minor, Lynx, Cancer, Hydra, Sextans, Crater, Virgo and Coma Berenices. Leo is visible to all observers located at latitudes between +90° and ?65° and is best seen at culmination during the month of April.
There are five annual meteor showers associated with constellation Leo. The first is the Delta Leonid meteor stream which begins becoming active between February 5 through March 19 every year. The activity peaks in late February with no exact date, and the maximum amount of activity averages around 5 meteor per hour. The next date is April 17 and the Sigma Leonid meteor shower. Look for this rare occurrence to happen near the Leo/Virgo border. It is a very weak shower and activity rates no higher than 1 to 2 meteors per hour. The next is the most dependable shower of all – the November Leonids. The peak date is November 17th, but activity occurs around 2 days on either side of the date. The radiant is near Regulus and this is the most spectacular of modern showers. The year 1966 saw 500,000 per hour a rate of up 140 per second! Just a few years ago, in 2005 the rates were equally impressive. Why? Comet Temple-Tuttle is the answer. Whenever it nears perihelion, it adds fresh material to the stream and gives us a spectacular show. On the average, you can expect around 20 per hour between 33 year shows, but they are the fastest known at 71 kps. The last is the Leo Minorids which peak on or about December 14. This meteor shower was discovered by amateurs in 1971 and hasn’t really been confirmed yet, but do look for around 10 faint meteors per hour.
In Greek mythology, Leo was identified as the Nemean Lion, which may have been the source of the “tail” of the lion that killed Hercules during one of his twelve labors. While many constellations are difficult to visualize, Leo’s backwards question-mark is relatively easily to picture as a majestic lion set in stars. One of the reasons for its placement in the zodiac is possibly due to the fact that lions left their place in the desert for the banks of the Nile when the Sun was positioned in these stars. It is also possible that the Nile’s rise at this time and the lion’s migration is also the reason for the Sphinx to appear as it does – a leonine figure. The Persians called it Ser or Shir; the Turks, Artan; the Syrians, Aryo; the Jewish, Arye; the Indians, “Sher”; and the Babylonians, Aru — all meaning a lion. Early Hindu astronomers recognized it by regal names, as did other cultures. All befitting of the “King of Beasts”!
Let’s begin our tour by taking a look at the brightest star – Alpha Leonis – the “a” symbol on our map. Its name is Regulus and it is one hot customer when it comes to spin rate. Revolving completely on its axis in a little less than 16 hours, oblate Regulus would fly apart if it were moving any faster. Ranking as the twenty-first brightest star in the night sky, Alpha Leonis is a helium type star about 5 times larger and 160 times brighter than our own Sun. Speeding away from us at 3.7 kilometers per second, Regulus isn’t alone, either. The “Little King” is a multiple star system composed of a hot, bright, bluish-white star with a pair of small, faint companions easily seen in small telescopes. The companion is itself a double at around magnitude 13 and is a dwarf of an uncertain type. There is also a 13th magnitude fourth star in this grouping, but it is believed that it is not associated with Regulus since the “Little King” is moving toward it and will be about 14″ away in 785 years. Not bad for a star that’s been reigning the skies for around for a few million years!
Let’s fade east now, and take a look at Beta Leonis – the “B” symbol on our map. Its name is Denebola which means the “Lion’s tail” in Arabic. Located about 36 light years from Earth, this white class A dwarf star is more luminous than the Sun, emitting 12 times the solar energy and a Delta-Scuti type variable star. While that in itself isn’t particularly rare, what makes Denebola unusual is that it belongs to the Vega-class stars – ones that have a shroud of infra-red emitting dust around them. This could mean a possibility of planet forming capabilities! In binoculars, look for an optical double star companion to Beta. It’s not gravitationally, or physically related, but it’s a pleasing pairing.
Now, return to Regulus and hop up for Eta Leonis, the “n” symbol on our map. Eta is very special because of its huge distance – about 2100 light years from our solar system – and that’s only a guess. It is a supergiant star, and one that is losing its stellar mass at a huge rate. Compared to Sol, Eta loses 100,000 times more mass each year! Because of its position near the ecliptic plane, Eta is also frequently occulted by the Moon. Thanks to alert observers, that’s how we learned that Eta is also a very close binary star, too – with a companion only about 40% dimmer than the primary. Some time over the next 17 million years, the pair of red supergiant stars will probably merge to become a pair of massive white dwarf stars… or they may just blow up. Only time will tell…
Hop north for Gamma Leonis – the “Y” symbol on our map. Its name is Algeiba and it is a very fine double visual star for binoculars and and true binary star small telescopes. Just take a look at this magnificent orange red and and yellow pair under magnification and you’ll return again and again. The brighter primary star is a giant K type and orbiting out about four times the distance of Pluto is its giant G type companion. Further north you’ll find another excellent visual double star for binoculars – Zeta Leonis. It’s name is Aldhafera and this stellar spectral class F star is about 260 light years away.
Are you ready to try your hand at locating a pair of galaxies with binoculars? Then let’s try the “Leo Trio” – M65, M66 and NGC 3623. Return towards Beta and look for the triangular area that marks the asterism of Leo’s “hips”. If the night is suitable for binocular galaxy hunting, you will clearly see fifth magnitude Iota Leonis south of Theta. Aim your binoculars between them. Depending on the field of view size of your binoculars, a trio of galaxies will be visible in about one third to one fourth of the area you see. Don’t expect them to walk right out, but don’t sell your binoculars short, either. The M65 and M66 pair have higher surface brightness and sufficient size to be noticed as two opposing faint smudges. NGC 3623 is spot on the same magnitude, but is edge on in presentation instead of face-on. This makes it a lot harder to spot, but chances are very good your averted vision will pick it up while studying the M65/66 pair. The “Leo Trio” makes for a fine challenge!
Now let’s begin working with larger binoculars and small telescopes as we head for M96 galaxy group (RA 10h 46m 45.7s Dec +11 49′ 12″). Messier 96 is the brightest spiral galaxy within the M96 Group which includes Messier 95 and Messier 105 as well as at least nine other galaxies. Located about 38 million light years away, this group of galaxies with the Hubble Space Telescope and 8 Delta Cephei variable stars were found to help determine each individual galaxy’s distance. While you can’t expect to see each member in small optics, larger telescopes can hope to find elliptical galaxies NGC 3489 (11:00.3 +13:54), NGC 3412 (10:50.9 +13:25), NGC 3384 (10:48.3 +12:38) and NGC 3377 (10:47.7 +13:59), as well as barred spiral galaxy NGC 3299 (10:36.4 +12:42),
For an awesome spiral galaxy in a small telescope, don’t overlook NGC 2903 (RA 9:32.2 Dec +21:30). At a bright magnitude 9, you can often see this particular galaxy in binoculars from a dark sky site as well. Discovered by William Herschel in 1784, this beauty is often considered a missing Messier because it just so bright and conspicuous. As a matter of fact, the comet of 1760 passed it on a night Messier was watching and he didn’t even see it! For larger telescopes, look for NGC 2905 – a bright knot which is actually a star forming region in the galaxy itself with its own Herschel designation.
Before we leave, you must stop by NGC 3521 (RA 11:05.8 Dec -00:02). This 35 million light year distant spiral galaxy is often overlooked for no apparent reason – but it shouldn’t be. At a very respectable magnitude 9, you can often find this elongated gem with the bright nucleus in larger binoculars from a dark sky site and you can easily study spiral galaxy structure with a larger telescope. Look for an inclined view with patchiness in the structure that indicates great star forming regions at work. Its stellar counter rotation is being studied because it has a bar structure that we are seeing “end on”!
This doesn’t even begin to scratch the surface of what you can find on Leo’s hide. Be sure to get yourself a good star chart or sky atlas and go lion taming!
Welcome back to Constellation Friday! Today, in honor of the late and great Tammy Plotner, we will be dealing with “Berenice’s Hair” – the Coma Berenices constellation!
In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.
One of these is the constellation Coma Berenices, an ancient constellation located in the norther skies. In the Almagest, Ptolemy considered the asterism to be part of the constellation Leo. Today, it is one of the 88 constellations recognized by the International Astronomical Union, and is bordered by the constellations of Canes Venatici, Ursa Major, Leo, Virgo and Boötes.
Name and Meaning:
In mythology, it is easy to see why this dim collection of stars was once associated with Leo and considered to be the tuft of hair at the end of the Lion’s tail. However, as the years passed, a charming legend grew around this sparkling group of stars. Since the time of Ptolemy, this grouping of stars was recognized and although he didn’t list it as one of his 88 constellations, he did refer to is as “Berenice’s Hair”.
As legend would have it, the good Queen Berenice II of Egypt offered to sacrifice her beautiful long hair to Aphrodite for the safe return of her husband from battle. When she cut off her locks and placed it on the altar and returned the next day, her sacrifice was gone. To save his life, the court astronomer proclaimed Aphrodite had immortalized Berenice’s gift in the stars… and thus the Lion lost his tail and the astronomer saved his hide!
History of Observation:
Like many of the 48 constellations recognized by Ptolemy, Coma Berenices traces it routes back to ancient Mesopotamia. To Babylonian astronomers, it was known as Hegala, which translated to “which is before it”. However, the first recorded mention comes from Conon of Samos, the 3rd century BCE court astronomer to Ptolemy III Euergetes – the Greek-Egyptian king. It was named in honor of his consort, Berenice II, who is said to have cut off her long hair as a sacrifice to ensure the safety of the king.
The constellation was named “bostrukhon Berenikes” in Greek, which translates in Latin to “Coma Berenices” (or “Berenice’s hair”). Though it was previously designated as its own constellation, Ptolemy considered it part of Leo in his 2nd century CE tract the Almagest, where he called it “Plokamos” (Greek for “braid”). The constellation was also recognized by many non-western cultures.
In Chinese astronomy, the stars making up Coma Berenices belonged to two different areas – the Supreme Palace Enclosure and the Azure Dragon of the East. Eighteen of the constellation’s stars were in an area known as Lang wei (“seat of the general”). To Arabic astronomers, Coma Berenices was known as Al-Du’aba, Al Dafira and Al-Hulba, forming the tuft of the constellation Leo (consistent with Ptolemy’s designation).
By the 16th century, the constellation began to be featured on globes and maps produced by famed cartographers and astronomers. In 1602, Tycho Brahe recognized it as its own constellation and included it in his star catalogue. In the following year, it was included in Johann Bayer’s famed celestial map, Uranometria. In 1920, it was included by the IAU in the list of the 88 modern constellations.
Notable Objects:
Despite being rather dim, Coma Berenices is significant because it contains the location of the North Galactic Pole. It is comprised of only 3 main stars, but contains 44 Bayer/Flamsteed designated members. Of its main stars, Alpha Comae Berenices (aka. Diadem) is the second-brightest in the constellation.
The name is derived from the Greek word diádema, which means “band” or “fillet”, and represents the gem in Queen Berenice’s crown. It is sometimes known by its other traditional name, Al-Zafirah, which is Arabic for “the braid”. It is a binary star composed of two main sequence F5V stars that are at a distance of 63 light years from Earth.
It’s brightest star, Beta Comae Berenices, is located 29.78 light years from Earth and is a main sequence dwarf that is similar to our Sun (though larger and brighter). It’s third major star, Gamma Comae Berenices, is a giant star belonging to the spectral class K1II and located about 170 light years from Earth.
Coma Berenices is also home to several Deep Sky Objects, which include spiral galaxy Messier 64. Also known as the Black Eye Galaxy (Sleeping Beauty Galaxy and Evil Eye Galaxy), this galaxy is located approximately 24 million light years from Earth. This galaxy has a bright nucleus and a dark band of dust in front of it, hence the nicknames.
Then there is the Needle Galaxy, which lies directly above the North Galactic Pole and was discovered by Sir William Herschel in 1785. It is one of the most famous galaxies in the sky that can be viewed edge-on. It lies at a distance of about 42.7 million light years from Earth and is believed to be a barred spiral galaxy from its appearance.
Coma Berenices is also home to two prominent galaxy clusters. These includes the Coma Cluster, which is made up of about 1000 large galaxies and 30,000 smaller ones that are located between 230 and 300 million light years from Earth. South of the Coma Cluster is the northern part of the Virgo Cluster, which is located roughly 60 million light years from Earth.
Other Messier Objects include M53, a globular cluster located approximately 58,000 light years away; Messier 100, a grand design spiral galaxy that is one of the brightest members of the Virgo cluster (located 55 million light years away); and Messier 88 and 99 – a spiral galaxy and unbarred spiral galaxy that are 47 million and 50.2 million light years distant, respectively.
Finding Coma Berenices:
Coma Berenices is best visible at latitudes between +90° and -70° during culmination in the month of May. There is one meteor shower associated with the constellation of Coma Berenices – the Coma Berenicid Meteor shower which peaks on or near January 18 of each year. Its fall rate is very slow – only one or two per hour on average, but these are among the fastest meteors known with speeds of up to 65 kilometers per second!
For both binoculars and telescopes, Coma Berenices is a wonderland of objects to be enjoyed. Turn your attention first to the brightest of all its stars – Beta Coma Berenices. Positioned about 30 light years from Earth and very similar to our own Sun, Beta is one of the few stars for which we have a measured solar activity period – 16.6 years – and may have a secondary activity cycle of 9.6 years.
Now look at slightly dimmer Alpha. Its name is Diadem – the Crown. Here we have a binary star of equal magnitudes located about 65 light years from our solar system, but it’s seen nearly “edge-on” from the Earth. This means the two stars appear to move back-and-forth in a straight line with a maximum separation of only 0.7 arcsec and will require a large aperture telescope with good resolving power to pull them apart. If you do manage, you’re separating two components that are about the distance of Saturn from the Sun!
Another interesting aspect about singular stars in Coma Berenices is that there are over 200 variable stars in the constellation. While most of them are very obscure and don’t go through radical changes, there is one called FK Comae Berenices which is a prototype of its class. It is believed that the variability of FK Com stars is caused by large, cool spots on the rotating surfaces of the stars – mega sunspots! If you’d like to keep track of a variable star that has notable changes, try FS Comae Berenices (RA 13 3 56 Dec +22 53 2). It is a semi-regular variable that varies between 5.3m and 6.1 magnitude over a period of 58 days.
For your eyes, binoculars or a rich field telescope, be sure to take in the massive open cluster Melotte 111. This spangly cloud of stars is usually the asterism we refer to as the “Queen’s Hair” and the area is fascinating in binoculars. Covering almost 5 full degrees of sky, it’s larger than most binocular fields, but wasn’t recognized as a true physical stellar association until studied by R.J. Trumpler in 1938.
Located about 288 light years from our Earth, Melotte 111 is neither approaching nor receding… unusual – but true. At around 400 million years old, you won’t find any stars dimmer than 10.5 magnitude here. Why? Chances are the cluster’s low mass couldn’t prevent them from escaping long ago…
Now turn your attention towards rich globular cluster, Messier 53. Achievable in both binoculars and small telescopes, M53 is easily found about a degree northwest Alpha Comae. At 60,000 light years away from the galactic center, it’s one of the furthest globular clusters away from where it should be. It was first discovered by Johann Bode in 1755, and once you glimpse its compact core you’ll be anxious to try to resolve it.
With a large telescope, you’ll notice about a degree further to the east another globular cluster – NGC 5053 – which is also about the same physical distance away. If you study this pair, you’ll notice a distinct difference in concentrations. The two are very much physically related to one another, yet the densities are radically different!
Staying with binoculars and small telescopes, try your hand at Messier 64 – the “Blackeye Galaxy”. You’ll find it located about one degree east/northeast of 35 Comae. While it will be nothing more than a hazy patch in binoculars, smaller telescopes will easily reveal the signature dustlane that makes M64 resemble its nickname. It is one of the brightest spiral galaxies visible from the Milky Way and the dark dust lane was first described by Sir William Herschel who compared it to a “Black Eye.”
Now put your telescope on Messier 100 – a beautiful example of a grand-design spiral galaxy, and one of the brightest galaxies in the Virgo Cluster. This one is very much like our own Milky Way galaxy and tilted face-on, so we may examine the spiral galaxy structure. Look for two well resolved spiral arms where young, hot and massive stars formed recently from density perturbations caused by interactions with neighboring galaxies. Under good observing conditions, inner spiral structure can even be seen!
Try lenticular galaxy Messier 85. In larger telescopes you will also see it accompanied by small barred spiral NGC 4394 as well. Both galaxies are receding at about 700 km/sec, and they may form a physical galaxy pair. How about Messier 88? It’s also one of the brighter spiral galaxies in the Virgo galaxy cluster and in a larger telescope it looks very similar to the Andromeda galaxy – only smaller.
How about barred spiral galaxy M91? It’s one of the faintest of the Messier Catalog Objects. Although it is difficult in a smaller telescope, its central bar is very strong in larger aperture. Care to try Messier 98? It is a grand edge-on galaxy and may or may not be a true member of the Virgo group. Perhaps spiral galaxy Messier 99 is more to your liking… It’s also another beautiful face-on presentation with grand spiral arms and a sweeping design that will keep you at the eyepiece all night!
There are other myriad open clusters and just as many galaxies waiting to be explored in Coma Berenices! It’s a fine region. Grab a good star chart and put a pot of coffee on to brew. Comb the Queen’s Hair for every last star. She’s worth it.