Is the Universe Fine-Tuned for Life?

Credit: NASA

For decades, various physicists have theorized that even the slightest changes in the fundamental laws of nature would make it impossible for life to exist. This idea, also known as the “Fine-Tuned Universe” argument, suggests that the occurrence of life in the Universe is very sensitive to the values of certain fundamental physics. Alter any of these values (as the logic goes), and life would not exist, meaning we must be very fortunate to be here!

But can this really be the case, or is it possible that life can emerge under different physical constants, and we just don’t know it? This question was recently tackled by Luke A. Barnes, a postdoctoral researcher at the Sidney Institute for Astronomy (SIA) in Australia. In his recent book, A Fortunate Universe: Life in a Finely Tuned Cosmos, he and Sydney astrophysics professor Geraint F. Lewis argued that a fine-tuned Universe makes sense from a physics standpoint.

Continue reading “Is the Universe Fine-Tuned for Life?”

How an Advanced Civilization Could Stop Dark Energy From Preventing Their Future Exploration

This illustration shows the evolution of the Universe, from the Big Bang on the left, to modern times on the right. Image: NASA

During the 1930s, astronomers came to realize that the Universe is in a state of expansion. By the 1990s, they realized that the rate at which it is expansion is accelerating, giving rise to the theory of “Dark Energy”. Because of this, it is estimated that in the next 100 billion years, all stars within the Local Group – the part of the Universe that includes a total of 54 galaxies, including the Milky Way – will expand beyond the cosmic horizon.

At this point, these stars will no longer be observable, but inaccessible – meaning that no advanced civilization will be able to harness their energy. Addressing this, Dr. Dan Hooper  – an astrophysicist from the Fermi National Accelerator Laboratory (FNAL) and the University of Chicago – recently conducted a study that indicated how a sufficiently advanced civilization might be able to harvest these stars and prevent them from expanding outward.

Continue reading “How an Advanced Civilization Could Stop Dark Energy From Preventing Their Future Exploration”

If There is a Multiverse, Can There be Life There Too?

Could our Universe be part of a wider Multiverse? And could these other Universes support life? Credit: Jaime Salcido/EAGLE Collaboration

The Multiverse Theory, which states that there may be multiple or even an infinite number of Universes, is a time-honored concept in cosmology and theoretical physics. While the term goes back to the late 19th century, the scientific basis of this theory arose from quantum physics and the study of cosmological forces like black holes, singularities, and problems arising out of the Big Bang Theory.

One of the most burning questions when it comes to this theory is whether or not life could exist in multiple Universes. If indeed the laws of physics change from one Universe to the next, what could this mean for life itself? According to a new series of studies by a team of international researchers, it is possible that life could be common throughout the Multiverse (if it actually exists).

Continue reading “If There is a Multiverse, Can There be Life There Too?”

Next Time You’re Late To Work, Blame Dark Energy!

Illustration of the Big Bang Theory
The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since. Credit: grandunificationtheory.com

Ever since Lemaitre and Hubble’s first proposed it in the 1920s, scientists and astronomers have been aware that the Universe is expanding. And from these observations, cosmological theories like the Big Bang Theory and the “Arrow of Time” emerged. Whereas the former addresses the origins and evolution of our Universe, the latter argues that the flow of time in one-direction and is linked to the expansion of space.

For many years, scientists have been trying to ascertain why this is. Why does time flow forwards, but not backwards? According to new study produced by a research team from the Yerevan Institute of Physics and Yerevan State University in Armenia, the influence of dark energy may be the reason for the forward-flow of time, which may make one-directional time a permanent feature of our universe.

Today, theories like the Arrow of Time and the expansion of the universe are considered fundamental facts about the Universe. Between measuring time with atomic clocks, observing the red shift of galaxies, and created detailed 3D maps that show the evolution of our Universe over the course of billions of years, one can see how time and the expansion of space are joined at the hip.

Artist's impression of the influence gravity has on space time. Credit: space.com
Artist’s impression of the influence gravity has on space time. Credit: space.com

The question of why this is the case though is one that has continued to frustrate physicists. Certain fundamental forces, like gravity, are not governed by time. In fact, one could argue without difficulty that Newton’s Laws of Motion and quantum mechanics work the same forwards or backwards. But when it comes to things on the grand scale like the behavior of planets, stars, and entire galaxies, everything seems to come down to the Second Law of Thermodynamics.

This law, which states that the total chaos (aka. entropy) of an isolated system always increases over time, the direction in which time moves is crucial and non-negotiable, has come to be accepted as the basis for the Arrow of Time. In the past, some have ventured that if the Universe began to contract, time itself would begin to flow backwards. However, since the 1990s and the observation that the Universe has been expanding at an accelerating rate, scientists have come to doubt that this.

If, in fact, the Universe is being driven to greater rates of expansion – the predominant explanation is that “Dark Energy” is what is driving it – then the flow of time will never cease being one way. Taking this logic a step further, two Armenian researchers – Armen E. Allahverdyan of the Center for Cosmology and Astrophysics at the Yerevan Institute of Physics and Vahagn G. Gurzadyan of Yerevan State University – argue that dark energy is the reason why time always moves forward.

In their paper, titled “Time Arrow is Influenced by the Dark Energy“, they argue that dark energy accelerating the expansion of the universe supports the asymmetrical nature of time. Often referred to as the “cosmological constant” – referring to Einstein’s original theory about a force which held back gravity to achieve a static universe – dark energy is now seen as a “positive” constant, pushing the Universe forward, rather than holding it back.

Diagram showing the Lambda-CBR universe, from the Big Bang to the the current era. Credit: Alex Mittelmann/Coldcreation
Diagram showing the Lambda-CBR universe, from the Big Bang to the the current era. Credit: Alex Mittelmann/Coldcreation

To test their theory, Allahverdyan and Gurzadyan used a large scale scenario involving gravity and mass – a planet with increasing mass orbiting a star. What they found was that if dark energy had a value of 0 (which is what physicists thought before the 1990s), or if gravity were responsible for pulling space together, the planet would simply orbit the star without any indication as to whether it was moving forwards or backwards in time.

But assuming that the value of dark energy is a positive (as all the evidence we’ve seen suggests) then the planet would eventually be thrown clear of the star. Running this scenario forward, the planet is expelled because of its increasing mass; whereas when it is run backwards, the planet closes in on the star and is captured by it’s gravity.

In other words, the presence of dark energy in this scenario was the difference between having an “arrow of time” and not having one. Without dark energy, there is no time, and hence no way to tell the difference between past, present and future, or whether things are running in a forward direction or backwards.

But of course, Allahverdyan and Gurzadyan were also sure to note in their study that this is a limited test and doesn’t answer all of the burning questions. “We also note that the mechanism cannot (and should not) explain all occurrences of the thermodynamic arrow,” they said. “However, note that even when the dark energy (cosmological constant) does not dominate the mean density (early universe or today’s laboratory scale), it still exists.”

Limited or not, this research is representative of some exciting new steps that astrophysicists have been taking of late. This involves not only questioning the origins of dark energy and the expansion force it creates, but also questioning its implication in basic physics. In so doing, researchers may finally be able to answer the age-old question about why time exists, and whether or not it can be manipulated (i.e. time travel!)

Further Reading: Physical Review E

Japanese 3D Galaxy Map Confirms Einstein Was One Smart Dude

An international team of researchers have produced the largest 3-D map of the universe to date, which validates Einstein's theory of General Relativity. Credit: NAOJ/CFHT/ SDSS

On June 30th, 1905, Albert Einstein started a revolution with the publication of theory of Special Relativity. This theory, among other things, stated that the speed of light in a vacuum is the same for all observers, regardless of the source. In 1915, he followed this up with the publication of his theory of General Relativity, which asserted that gravity has a warping effect on space-time. For over a century, these theories have been an essential tool in astrophysics, explaining the behavior of the Universe on the large scale.

However, since the 1990s, astronomers have been aware of the fact that the Universe is expanding at an accelerated rate. In an effort to explain the mechanics behind this, suggestions have ranged from the possible existence of an invisible energy (i.e. Dark Energy) to the possibility that Einstein’s field equations of General Relativity could be breaking down. But thanks to the recent work of an international research team, it is now known that Einstein had it right all along.

Continue reading “Japanese 3D Galaxy Map Confirms Einstein Was One Smart Dude”

Big Bang Theory: Evolution of Our Universe

Illustration of the Big Bang Theory
The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since. Credit: grandunificationtheory.com

How was our Universe created? How did it come to be the seemingly infinite place we know of today? And what will become of it, ages from now? These are the questions that have been puzzling philosophers and scholars since the beginning the time, and led to some pretty wild and interesting theories. Today, the consensus among scientists, astronomers and cosmologists is that the Universe as we know it was created in a massive explosion that not only created the majority of matter, but the physical laws that govern our ever-expanding cosmos. This is known as The Big Bang Theory.

For almost a century, the term has been bandied about by scholars and non-scholars alike. This should come as no surprise, seeing as how it is the most accepted theory of our origins. But what exactly does it mean? How was our Universe conceived in a massive explosion, what proof is there of this, and what does the theory say about the long-term projections for our Universe?

The basics of the Big Bang theory are fairly simple. In short, the Big Bang hypothesis states that all of the current and past matter in the Universe came into existence at the same time, roughly 13.8 billion years ago. At this time, all matter was compacted into a very small ball with infinite density and intense heat called a Singularity. Suddenly, the Singularity began expanding, and the universe as we know it began.

Continue reading “Big Bang Theory: Evolution of Our Universe”

Gamma Ray Bursts Limit The Habitability of Certain Galaxies, Says Study

An artistic image of the explosion of a star leading to a gamma-ray burst. (Source: FUW/Tentaris/Maciej Fro?ow)

Gamma ray bursts (GRBs) are some of the brightest, most dramatic events in the Universe. These cosmic tempests are characterized by a spectacular explosion of photons with energies 1,000,000 times greater than the most energetic light our eyes can detect. Due to their explosive power, long-lasting GRBs are predicted to have catastrophic consequences for life on any nearby planet. But could this type of event occur in our own stellar neighborhood? In a new paper published in Physical Review Letters, two astrophysicists examine the probability of a deadly GRB occurring in galaxies like the Milky Way, potentially shedding light on the risk for organisms on Earth, both now and in our distant past and future.

There are two main kinds of GRBs: short, and long. Short GRBs last less than two seconds and are thought to result from the merger of two compact stars, such as neutron stars or black holes. Conversely, long GRBs last more than two seconds and seem to occur in conjunction with certain kinds of Type I supernovae, specifically those that result when a massive star throws off all of its hydrogen and helium during collapse.

Perhaps unsurprisingly, long GRBs are much more threatening to planetary systems than short GRBs. Since dangerous long GRBs appear to be relatively rare in large, metal-rich galaxies like our own, it has long been thought that planets in the Milky Way would be immune to their fallout. But take into account the inconceivably old age of the Universe, and “relatively rare” no longer seems to cut it.

In fact, according to the authors of the new paper, there is a 90% chance that a GRB powerful enough to destroy Earth’s ozone layer occurred in our stellar neighborhood some time in the last 5 billion years, and a 50% chance that such an event occurred within the last half billion years. These odds indicate a possible trigger for the second worst mass extinction in Earth’s history: the Ordovician Extinction. This great decimation occurred 440-450 million years ago and led to the death of more than 80% of all species.

Today, however, Earth appears to be relatively safe. Galaxies that produce GRBs at a far higher rate than our own, such as the Large Magellanic Cloud, are currently too far from Earth to be any cause for alarm. Additionally, our Solar System’s home address in the sleepy outskirts of the Milky Way places us far away from our own galaxy’s more active, star-forming regions, areas that would be more likely to produce GRBs. Interestingly, the fact that such quiet outer regions exist within spiral galaxies like our own is entirely due to the precise value of the cosmological constant – the factor that describes our Universe’s expansion rate – that we observe. If the Universe had expanded any faster, such galaxies would not exist; any slower, and spirals would be far more compact and thus, far more energetically active.

In a future paper, the authors promise to look into the role long GRBs may play in Fermi’s paradox, the open question of why advanced lifeforms appear to be so rare in our Universe. A preprint of their current work can be accessed on the ArXiv.

One Percent Measure of the Universe

An artist's concept of the latest, highly accurate measurement of the Universe from BOSS. The spheres show the current size of the "baryon acoustic oscillations" (BAOs) from the early universe, which have helped to set the distribution of galaxies that we see in the universe today. Galaxies have a slight tendency to align along the edges of the spheres — the alignment has been greatly exaggerated in this illustration. BAOs can be used as a "standard ruler" (white line) to measure the distances to all the galaxies in the universe. Credit: Zosia Rostomian, Lawrence Berkeley National Laboratory

When it comes to accuracy, everyone strives for a hundred percent, but measuring cosmic distances leaves a bit more to chance. Just days ago, researchers from the Baryon Oscillation Spectroscopic Survey (BOSS) announced to the world that they have been able to measure the distance to galaxies located more than six billion light-years away to a confidence level of just one percent. If this announcement doesn’t seem exciting, then think on what it means to other studies. These new measurements give a parameter to the properties of the ubiquitous “dark energy” – the source of universal expansion.

“There are not many things in our daily lives that we know to one-percent accuracy,” said David Schlegel, a physicist at Lawrence Berkeley National Laboratory (LBNL) and the principal investigator of BOSS. “I now know the size of the universe better than I know the size of my house.”

The research team’s findings were presented at the meeting of the American Astronomical Society by Harvard University astronomer Daniel Eisenstein, the director of the Sloan Digital Sky Survey III (SDSS-III), the worldwide organization which includes BOSS. They are detailed in a series of articles submitted to journals by the BOSS collaboration last month, all of which are now available as online preprints.

“Determining distance is a fundamental challenge of astronomy,” said Eisenstein. “You see something in the sky — how far away is it? Once you know how far away it is, learning everything else about it is suddenly much easier.”

When it comes to measuring distances in space, astronomers have employed many methods. To measure distances to planets has been accomplished using radar, but it has its constraints and going further into space means a less direct method. Even though they have been proved to be amazingly accurate, there is still an uncertainty factor involved – one that is expressed as a percentage. For example, if you were to measure the distance from an object 200 miles away to within a true value of 2 miles, then you have measured with an accuracy of 1%. Cosmically speaking, just a few hundred stars and a handful of star clusters are actually close enough to have their distances so accurately predicted. They reside within the Milky Way and are just a few thousand light-years away. BOSS takes it to the extreme… its measurements go well beyond our galactic boundaries, more than a million times further, and maps the Universe with unparalleled accuracy.

Thanks to these new, highly-accurate distance measurements, BOSS astronomers are making headway in the field of dark energy. “We don’t yet understand what dark energy is,” explained Eisenstein, “but we can measure its properties. Then, we compare those values to what we expect them to be, given our current understanding of the universe. The better our measurements, the more we can learn.”

Just how is it done? To achieve a one-percent measurement at six billion light years isn’t as easy as measuring a solar system object, or even one contained within our galaxy. That’s where the BOSS comes into play. It’s the largest of the four projects that make up the Sloan Digital Sky Survey III (SDSS-III), and was built to take advantage of this technique: measuring the so-called “baryon acoustic oscillations” (BAOs), subtle periodic ripples in the distribution of galaxies in the cosmos. These ripples are the signature of pressure waves which once cruised the early Universe at a time when things were so hot and dense that photons marched along with baryons – the stuff which creates the nuclei of atoms. Since the size of the ripple is known, that size can now be measured by mapping galaxies.

“With these galaxy measurements, nature has given us a beautiful ruler,” said Ashley Ross, an astronomer from the University of Portsmouth. “The ruler happens to be half a billion light-years long, so we can use it to measure distances precisely, even from very far away.

Using its specialized instrumentation which can make detailed measurements of a thousand galaxies at a time, BOSS took on a huge challenge – mapping the location of more than a million galaxies. “On a clear night when everything goes perfectly, we can add more than 8000 galaxies and quasars to the map,” said Kaike Pan, who leads the team of observers at the SDSS-III’s Sloan Foundation 2.5-meter Telescope at Apache Point Observatory in New Mexico.

Although the BOSS research team presented its early galaxy maps and beginning BAO measurements a year ago, this new data covers twice as much territory and gives an even more accurate measurement – including those to nearby galaxies. “Making these measurements at two different distances allows us to see how the expansion of the universe has changed over time, which will help us understand why it is accelerating,” explained University of Portsmouth astronomer Rita Tojeiro, who co-chairs the BOSS galaxy clustering working group along with Jeremy Tinker of New York University.

Also doing a similar study is Mariana Vargas-Magana, a postdoctoral researcher at Carnegie Mellon University. To enable even more accuracy, she’s looking into any subtle effects which could influence the BOSS measurements. “When you’re trying to reach one percent, you have to be paranoid about everything that could go even slightly wrong,” said Vargas-Magana — for example, slight differences in how galaxies were identified could have thrown off the entire measurement of their distribution, so different parts of the sky had to be checked carefully. “Fortunately,” Vargas-Magana said, “there are plenty of careful people on our team to check our assumptions. By the time all of them are satisfied, we are sure we didn’t miss anything.”

As of the present, these new BOSS findings would seem to be consistent with what we consider to be form of dark energy – a constant found throughout the history of the Universe. According to the news release, this “cosmological constant” is one of just six numbers required to create a model which coincides with the scale and structure of the Universe. Schlegel compares this six-number model to a pane of glass, which is pinned in place by bolts that represent different measurements of the history of the Universe. “BOSS now has one of the tightest of those bolts, and we just gave it another half-turn,” said Schlegel. “Each time you ratchet up the tension and the glass doesn’t break, that’s a success of the model.”

Original Story Source: Sloan Digital Sky Survey III News Release. For further reading: Max Planck Institute News Release.

Podcast: Cosmological Constant

In order to allow for a static Universe, Albert Einstein introduced the concept of the Cosmological Constant Lambda to make the math work out. Once it was discovered that the Universe was actually expanding, he threw the number out calling it his “biggest blunder.” But thanks to dark energy, the Cosmological Constant is back.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

“Cosmological Constant” on the Astronomy Cast website, with shownotes and transcript.

And the podcast is also available as a video, as Fraser and Pamela now record Astronomy Cast as part of a Google+ Hangout:

Dark Energy Ignited By Gamma-Ray Bursts?

An artistic image of the explosion of a star leading to a gamma-ray burst. (Source: FUW/Tentaris/Maciej Fro?ow)

[/caption]

Dark energy… We’re still not exactly sure of what it is or where it comes from. Is it possible this mysterious force is what’s driving the expansion of the Universe? A group of astronomers from the universities in Warsaw and Naples, headed by Dr. Ester Piedipalumbo, are taking a closer look at a way to measure this energetic enigma and they’re doing it with one of the most intense sources they can find – gamma-ray bursts.

“We are able to determine the distance of an explosion on the basis of the properties of the radiation emitted during gamma-ray bursts. Given that some of these explosions are related to the most remote objects in space that we know about, we are able, for the first time, to assess the speed of space-time expansion even in the relatively early periods after the Big Bang,” says Prof. Marek Demianski (FUW).

What spawned this new method? In 1998, astronomers were measuring the energy given off by Type Ia supernovae events and realized the expelled forces were consistent. Much like the standard candle model, this release could be used to determine cosmic distances. But there was just one caveat… The more remote the event, the weaker the signature.

While these faint events weren’t lighting up the night, they were lighting up the way science thought about things. Perhaps these Type Ia supernovae were farther away than surmised… and if this were true, perhaps instead of slowing down the expansion of the Universe, maybe it was accelerating! In order to set the Universal model to rights, a new form of mass-energy needed to be introduced – dark energy – and it needed to be twenty times more than what we could perceive. “Overnight, dark energy became, quite literally, the greatest mystery of the Universe,” says Prof. Demianski. In a model put forward by Einstein it’s a property of the cosmological constant – and another model suggests accelerated expansion is caused by some unknown scalar field. “In other words, it is either-or: either space-time expands by itself or is expanded by a scalar physical field inside it,” says Prof. Demianski.

So what’s the point behind the studies? If it is possible to use a gamma-ray burst as a type of standard candle, then astronomers can better assess the density of dark energy, allowing them to further refine models. If it stays monophonic, it belongs to the cosmological constant and is a property of space-time. However, if the acceleration of the Universe is the property of a scalar field, the density of dark energy would differ. “This used to be a problem. In order to assess the changes in the density of dark energy immediately after the Big Bang, one needs to know how to measure the distance to very remote objects. So remote that even Type Ia supernovae connected to them are too faint to be observed,” says Demianski.

Now the real research begins. Gamma-ray bursts needed to have their energy levels measured and to do that accurately meant looking at previous studies which contained verified sources of distance, such as Type Ia supernovae. “We focused on those instances. We knew the distance to the galaxy and we also knew how much energy of the burst reached the Earth. This allowed us to calibrate the burst, that is to say, to calculate the total energy of the explosion,” explains Prof. Demianski. Then the next step was to find statistical dependencies between various properties of the radiation emitted during a gamma-ray burst and the total energy of the explosion. Such relations were discovered. “We cannot provide a physical explanation of why certain properties of gamma-ray bursts are correlated,” points out Prof. Demianski. “But we can say that if registered radiation has such and such properties, then the burst had such and such energy. This allows us to use bursts as standard candles, to measure distances.”

Dr. Ester Piedipalumbo and a team of researchers from the universities in Warsaw and Naples then took up the gauntlet. Despite this fascinating new concept, the reality is that distant gamma-ray bursts are unusual. Even with 95 candidates listed in the Amanti catalogue, there simply wasn’t enough information to pinpoint dark energy. “It is quite a disappointment. But what is important is the fact that we have in our hands a tool for verifying hypotheses about the structure of the Universe. All we need to do now is wait for the next cosmic fireworks,” concludes Prof. Demianski.

Let the games begin…

Original Story Source: University of Warsaw Press Release. For Further Reading: Cosmological models in scalar tensor theories of gravity and observations: a class of general solutions.