Now Available: 30 Free Lectures by Noted Astronomers

We just received a note from Andrew Franknoi and the Astronomical Society of the Pacific that they are making available, free of charge, 30 audio and video podcasts from talks given by distinguished astronomers on the latest ideas and discoveries in the field. Speakers include:

* Frank Drake, who began the experimental search for intelligent life among the stars,
* Mike Brown, who discovered most of the dwarf planets beyond Pluto (and whose humorous talk is entitled “How I Killed Pluto and Why it Had it Coming”),
* Natalie Batalha, project scientists on the Kepler Mission to find Earths around other stars,
* Alex Filippenko (national professor of the year) on finding black holes.

Recent topics added to the offerings include: multiple universes, Saturn’s moon Titan (with an atmosphere, rivers, and lakes), our explosive Sun, and whether we should expect doomsday in 2012.

The talks are part of the Silicon Valley Astronomy Lectures, jointly sponsored by NASA’s Ames Research Center, the Astronomical Society of the Pacific, the SETI Institute, and Foothill College.
They are available via the web and ITunes. For a complete list and to begin listening, go to:
http://www.astrosociety.org/education/podcast/

Testing the Multiverse… Observationally!

Seven Year Microwave Sky (Credit: NASA/WMAP Science Team)

[/caption]The multiverse theory is famous for its striking imagery. Just imagine our own Universe, drifting among a veritable sea of spontaneously inflating “bubble universes”, each a self-contained and causally separate pocket of higher-dimensional spacetime. It’s quite an arresting picture. However, the theory is also famous for being one of the most criticized in all of cosmology. Why? For one, the idea is remarkably difficult, if not downright impossible, to test experimentally. But now, a team of British and Canadian scientists believe they may have found a way.

Attempts to prove the multiverse theory have historically relied upon examination of the CMB radiation, relic light from the Big Bang that satellites like NASA’s Wilkinson Microwave Anisotropy Probe, or WMAP, have probed with incredible accuracy. The CMB has already allowed astronomers to map the network of large-scale structure in today’s Universe from tiny fluctuations detected by WMAP. In a similar manner, some cosmologists have hoped to comb the CMB for disk-shaped patterns that would serve as evidence of collisions with other bubble universes.

Seven Year Microwave Sky (Credit: NASA/WMAP Science Team)

Now, physicists at University College London, Imperial College London and the Perimeter Institute for Theoretical Physics have designed a computer algorithm that actually examines the WMAP data for these telltale signatures. After determining what the WMAP results would look like both with and without cosmic collisions, the team uses the algorithm to determine which scenario fits best with the actual WMAP data. Once the results are in, the team’s algorithm performs a statistical analysis to ensure that any signatures that are detected are in fact due to collisions with other universes, and are unlikely to be due to chance. As an added bonus, the algorithm also puts an upper limit on the number of collision signatures astronomers are likely to find.

While their method may sound fairly straightforward, the researchers are quick to acknowledge the difficulty of the task at hand. As UCL researcher and co-author of the paper Dr. Hiranya Peiris put it, “It’s a very hard statistical and computational problem to search for all possible radii of the collision imprints at any possible place in the sky. But,” she adds, “that’s what pricked my curiosity.”

The results of this ground-breaking project are not yet conclusive enough to determine whether we live in a multiverse or not; however, the scientists remain optimistic about the rigor of their method. The team hopes to continue its research as the CMB is probed more deeply by the Planck satellite, which began its fifth all-sky survey on July 29. The research is published in Physical Review Letters and Physical Review D.

Source: UCL

Ancient Galaxies Fed On Gas, Not Collisions

The Sombrero Galaxy. Credit: ESO/P. Barthe

[/caption]The traditional picture of galaxy growth is not pretty. In fact, it’s a kind of cosmic cannibalism: two galaxies are caught in ominous tango, eventually melding together in a fiery collision, thus spurring on an intense but short-lived bout of star formation. Now, new research suggests that most galaxies in the early Universe increased their stellar populations in a considerably less violent way, simply by burning through their own gas over long periods of time.

The research was conducted by a group of astronomers at NASA’s Spitzer Science Center in Pasadena, California. The team used the Spitzer Space Telescope to peer at 70 distant galaxies that flourished when the Universe was only 1-2 billion years old. The spectra of 70% of these galaxies showed an abundance of H alpha, an excited form of hydrogen gas that is prevalent in busy star-forming regions. Today, only one out of every thousand galaxies carries such an abundance of H alpha; in fact, the team estimates that star formation in the early Universe outpaced that of today by a factor of 100!

This split view shows how a normal spiral galaxy around our local universe (left) might have looked back in the distant universe, when astronomers think galaxies would have been filled with larger populations of hot, bright stars (right). Image credit: NASA/JPL-Caltech/STScI

Not only did these early galaxies crank out stars much faster than their modern-day counterparts, but they created much larger stars as well. By grazing on their own stores of gas, galaxies from this epoch routinely formed stars up to 100 solar masses in size.

These impressive bouts of star formation occurred over the course of hundreds of millions of years. The extremely long time scales involved suggest that while they probably played a minor role, galaxy mergers were not the main precursor to star formation in the Universe’s younger years. “This type of galactic cannibalism was rare,” said Ranga-Ram Chary, a member of the team. “Instead, we are seeing evidence for a mechanism of galaxy growth in which a typical galaxy fed itself through a steady stream of gas, making stars at a much faster rate than previously thought.” Even on cosmic scales, it would seem that slow and steady really does win the race.

Source: JPL

Most Distant Quasar Opens Window Into Early Universe

Quasar
Quasar

[/caption]Astronomers have uncovered yet another clue in their quest to understand the Universe’s early life: the most distant quasar ever observed. At a redshift of 7.1, it is a relic from when the cosmos was just 770 million years old – just 5% of its age today.

Quasars are extremely old, outrageously luminous balls of radiation that were prevalent in the early Universe. Each is thought to have been fueled at its core by an incredibly powerful supermassive black hole. The most recent discovery (which carries the romantic name ULAS J1120+0641) is noteworthy for a couple of reasons. First of all, its supermassive black hole weighs approximately two billion solar masses – an impressive feat of gravity so soon after the Big Bang. It is also incredibly bright, given its great distance. “Objects that lie at such large distance are almost impossible to find in visible-light surveys because their light is stretched by the expansion of the universe,” said Dr. Simon Dye of the University of Nottingham, a member of the team that discovered the object. “This means that by the time their light gets to Earth, most of it ends up in the infrared part of the electromagnetic spectrum.” Due to these effects, only about 100 visible quasars exist in the sky at redshifts higher than 7.

Up until recently, the most distant quasar observed was at a redshift of 6.4; but thanks to this discovery, astronomers can probe 100 million years further into the history of the Universe than ever before. Careful study of ULAS J1120+0641 and its properties will enable scientists to learn more about galaxy formation and supermassive black hole growth in early epochs. The research was published in the June 30 issue of Nature.

For further reading, see related paper by Chris Willot, Monster in the Early Universe

Source: EurekAlert

Cosmology in the Year 1 Trillion

Young binarys stars: Image credit: NASA

[/caption]Much of what is known today about the birth of the cosmos comes from astronomical observations at high redshifts. Due to the accelerated expansion of the Universe, however, astronomers of the future will be unable to use the same methods. In a trillion years or so, our own Milky Way galaxy will have merged with the Andromeda galaxy, creating a new galaxy that has been quaintly termed “Milkomeda.” All of our other galactic neighbors will have long disappeared beyond our cosmological horizon. Even the CMB will have been stretched into invisibility. So how will future Milkomedans study cosmology? How will they figure out where the Universe came from?

According to a paper published by the Harvard-Smithsonan Center for Astrophysics, these astronomers will be able to decode the secrets of the cosmos by studying stellar runaways from their own galaxy: so-called hypervelocity stars (HVSs). HVSs originate in binary or triple-star systems that wander just a hair too close to their galaxy’s central supermassive black hole. Astronomers believe that one star from the system is captured by the black hole, while the others are sent careening out of the galaxy at colossally high speeds. HVS ejections occur relatively rarely (approximately once every 10,000-100,000 years) and should continue to occur for trillions of years, given the large density of stars in the galactic center.

So how would HVSs help future astronomers study the origins of the Universe? First, these scientists would have to locate an ejected star beyond the gravitational boundary of Milkomeda. Once beyond this boundary (after about 2 billion years of travel), the acceleration of a HVS could be attributed entirely to the Hubble flow. With advanced technology, future astronomers could use the Doppler shift of its spectral lines and thus deduce Einstein’s cosmological constant and the acceleration of the Universe at large. Next, scientists could use mathematical models of galaxy formation and collapse to determine the Universe’s mass density and age at the time that Milkomeda formed. From their knowledge of the galaxy’s age, they would be able to tell when the Big Bang occurred.

Examining the Great Wall

Several superclusters revealed by the 2dF Galaxy Redshift Survey. This contains the structure known as the "Sloan Great Wall". Courtesy 2dF Galaxy Redshift Survey.
Several superclusters revealed by the 2dF Galaxy Redshift Survey. This contains the structure known as the "Sloan Great Wall". Courtesy 2dF Galaxy Redshift Survey.

[/caption]

Structure exists on nearly all scales in the universe. Matter clumps under its own gravity into planets, stars, galaxies, clusters, and superclusters. Beyond even these in scale are the filaments and voids. The largest of these filaments is known as the Sloan Great Wall. This giant string of galaxies is 1.4 billion light years across making it the largest known structure in the universe. Yet surprisingly, the Great Wall has never been studied in detail. Superclusters within it have been examined, but the wall as a whole has only come into consideration in a new paper from a team led by astronomers at Tartu Observatory in Estonia.

The Sloan Great Wall was first discovered in 2003 from the Sloan Digital Sky Survey (SDSS). The survey mapped the position of hundreds of millions of galaxies revealing the large scale structure of the universe and uncovering the Great Wall.

Within it, the wall contains several interesting superclusters. The largest of these SCl 126 has been shown previously to be unusual compared to superclusters within other large scale structures. SCl 126 is described as having an exceptionally rich core of galaxies with tendrils of galaxies trailing away from it like an enormous “spider”. Typical superclusters have many smaller clusters connected by these threads. This pattern is exemplified by one of the other rich superclusters in the wall, SCl 111. If the wall is examined in only its densest portions, the tendrils extending away from these cores are quite simple, but as the team explored lower densities, sub filaments became apparent.

Another way the team examined the Great Wall was by looking at the arrangement of different types of galaxies. In particular, the team looked for Bright Red Galaxies (BRGs) and found that these galaxies are often found together in groups with at least five BRGs present. These galaxies were often the brightest of the galaxies within their own groups. As a whole, the groups with BRGs tended to have more galaxies which were more luminous, and have a greater variety of velocities. The team suggests that this increased velocity dispersion is a result of a higher rate of interactions among galaxies than in other clusters. This is especially true for SCl 126 where many galaxies are actively merging. Within SCl 126, these BRG groups were evenly distributed between the core and the outskirts while in SCl 111, these groups tended to congregate towards the high density regions. In both of these superclusters, spiral galaxies comprised about 1/3 of the BRGs.

The study of such properties will help astronomers to test cosmological models that predict galactic structure formation. The authors note that models have generally done a good job of being able to account for structures similar to SCl 111 and most other superclusters we have observed in the universe. However, they fall short in creating superclusters with the size, morphology and distribution of SCl 126. These formations arise from density fluctuations initially present during the Big Bang. As such, understanding the structures they formed will help astronomers to understand these perturbations in greater detail and, in turn, what physics would be necessary to achieve them. To help achieve this, the authors intend to continue mapping the morphology of the Sloan Great Wall as well as other superclusters to compare their features.

A New Spin on Galactic Evolution

Spiral galaxy arms may carry stars along with them, suggests new study

 

There’s a new concept in the works regarding the evolution of galactic arms and how they move across the structure of spiral galaxies. Robert Grand, a postgraduate student at University College London’s Mullard Space Science Laboratory, used new computer modeling to suggest that these signature features of spiral galaxies – including our own Milky Way – evolve in different ways than previously thought.

The currently accepted theory is as spiral galaxies rotate, the “arms” are actually transient structures that move across the flattened disc of stars surrounding the galactic bulge, yet don’t directly affect the movement of the individual stars themselves. This would work in much the same way as a “wave” goes across a crowd at a stadium event. The wave moves, but the individual people do not move along with it – rather, they stay seated after it has passed.

However when Grand researched this suggested motion using computer models of galaxies, he and his colleagues found that this was not what tended to happen. Instead the stars actually moved along with the arms, rather than maintaining their positions.

Also it was observed in these models that the arms themselves are not permanent features, but rather break up and reform over the course of 80 to 100 million years. Grand suggests that this may be due to the powerful gravitational shear forces generated by the spinning of the galaxy.

“We simulated the evolution of spiral arms for a galaxy with five million stars over a period of 6 billion years. We found that stars are able to migrate much more efficiently than anyone previously thought. The stars are trapped and move along the arm by their gravitational influence, but we think that eventually the arm breaks up due to the shear forces.”

– Robert Grand

Snapshots of face-on view of a simulated disc galaxy.

The computer models also showed that the stars along the leading edge of the arms tended to move inwards toward the galactic center while the stars lining the trailing ends were carried to the outer edge of the galaxy.

Since it takes hundreds of millions of years for a spiral galaxy to complete even just one single rotation, observing their evolution and morphology is impossible to do in real time. Researchers like Grand and his simulations are key to our eventual understanding of how these islands of stars formed and continue to shape themselves into the vast, varied structures we see today.

“This research has many potential implications for future observational astronomy, like the European Space Agency’s next corner stone mission, Gaia, which MSSL is also heavily involved in.  As well as helping us understand the evolution of our own galaxy, it may have applications for regions of star formation.”

– Robert Grand

The results were presented at the Royal Astronomical Society’s National Astronomy Meeting in Wales on April 20. Read the press release on the Royal Astronomical Society’s website here.

Top image: M81, a spiral galaxy similar to our own Milky Way, is one of the brightest galaxies that can be seen from Earth. The spiral arms wind all the way down into the nucleus and are made up of young, bluish, hot stars formed in the past few million years, while the central bulge contains older, redder stars. Credit: NASAESA, and The Hubble Heritage Team (STScI/AURA)

Did the Early Universe Have Just One Dimension?

Planck all-sky image. Credit: ESA, HFI and LFI consortia.

[/caption]

From a University of Buffalo press release:

Did the early universe have just one spatial dimension? That’s the mind-boggling concept at the heart of a theory that physicist Dejan Stojkovic from the University at Buffalo and colleagues proposed in 2010. They suggested that the early universe — which exploded from a single point and was very, very small at first — was one-dimensional (like a straight line) before expanding to include two dimensions (like a plane) and then three (like the world in which we live today).

The theory, if valid, would address important problems in particle physics.

Now, in a new paper in Physical Review Letters, Stojkovic and Loyola Marymount University physicist Jonas Mureika describe a test that could prove or disprove the “vanishing dimensions” hypothesis.

Because it takes time for light and other waves to travel to Earth, telescopes peering out into space can, essentially, look back into time as they probe the universe’s outer reaches.

Gravitational waves can’t exist in one- or two-dimensional space. So Stojkovic and Mureika have reasoned that the Laser Interferometer Space Antenna (LISA), a planned international gravitational observatory, should not detect any gravitational waves emanating from the lower-dimensional epochs of the early universe.

Stojkovic, an assistant professor of physics, says the theory of evolving dimensions represents a radical shift from the way we think about the cosmos — about how our universe came to be.

The core idea is that the dimensionality of space depends on the size of the space we’re observing, with smaller spaces associated with fewer dimensions. That means that a fourth dimension will open up — if it hasn’t already — as the universe continues to expand.

The theory also suggests that space has fewer dimensions at very high energies of the kind associated with the early, post-big bang universe.

If Stojkovic and his colleagues are right, they will be helping to address fundamental problems with the standard model of particle physics, including the following:

The incompatibility between quantum mechanics and general relativity. Quantum mechanics and general relativity are mathematical frameworks that describe the physics of the universe. Quantum mechanics is good at describing the universe at very small scales, while relativity is good at describing the universe at large scales. Currently, the two theories are considered incompatible; but if the universe, at its smallest levels, had fewer dimensions, mathematical discrepancies between the two frameworks would disappear.

Physicists have observed that the expansion of the universe is speeding up, and they don’t know why. The addition of new dimensions as the universe grows would explain this acceleration. (Stojkovic says a fourth dimension may have already opened at large, cosmological scales.)

The standard model of particle physics predicts the existence of an as yet undiscovered elementary particle called the Higgs boson. For equations in the standard model to accurately describe the observed physics of the real world, however, researchers must artificially adjust the mass of the Higgs boson for interactions between particles that take place at high energies. If space has fewer dimensions at high energies, the need for this kind of “tuning” disappears.

“What we’re proposing here is a shift in paradigm,” Stojkovic said. “Physicists have struggled with the same problems for 10, 20, 30 years, and straight-forward extensions of the existing ideas are unlikely to solve them.”

“We have to take into account the possibility that something is systematically wrong with our ideas,” he continued. “We need something radical and new, and this is something radical and new.”

Because the planned deployment of LISA is still years away, it may be a long time before Stojkovic and his colleagues are able to test their ideas this way.

However, some experimental evidence already points to the possible existence of lower-dimensional space.

Specifically, scientists have observed that the main energy flux of cosmic ray particles with energies exceeding 1 teraelectron volt — the kind of high energy associated with the very early universe — are aligned along a two-dimensional plane.

If high energies do correspond with lower-dimensional space, as the “vanishing dimensions” theory proposes, researchers working with the Large Hadron Collider particle accelerator in Europe should see planar scattering at such energies.

Stojkovic says the observation of such events would be “a very exciting, independent test of our proposed ideas.”

Sources: EurekAlert, Physical Review Letters.

Antigravity Could Replace Dark Energy as Cause of Universe’s Expansion

Annihilation
Illustration of Antimatter/Matter Annihilation. (NASA/CXC/M. Weiss)

[/caption]

Since the late 20th century, astronomers have been aware of data that suggest the universe is not only expanding, but expanding at an accelerating rate. According to the currently accepted model, this accelerated expansion is due to dark energy, a mysterious repulsive force that makes up about 73% of the energy density of the universe. Now, a new study reveals an alternative theory: that the expansion of the universe is actually due to the relationship between matter and antimatter. According to this study, matter and antimatter gravitationally repel each other and create a kind of “antigravity” that could do away with the need for dark energy in the universe.

Massimo Villata, a scientist from the Observatory of Turin in Italy, began the study with two major assumptions. First, he posited that both matter and antimatter have positive mass and energy density. Traditionally, the gravitational influence of a particle is determined solely by its mass. A positive mass value indicates that the particle will attract other particles gravitationally. Under Villata’s assumption, this applies to antiparticles as well. So under the influence of gravity, particles attract other particles and antiparticles attract other antiparticles. But what kind of force occurs between particles and antiparticles?

To resolve this question, Villata needed to institute the second assumption – that general relativity is CPT invariant. This means that the laws governing an ordinary matter particle in an ordinary field in spacetime can be applied equally well to scenarios in which charge (electric charge and internal quantum numbers), parity (spatial coordinates) and time are reversed, as they are for antimatter. When you reverse the equations of general relativity in charge, parity and time for either the particle or the field the particle is traveling in, the result is a change of sign in the gravity term, making it negative instead of positive and implying so-called antigravity between the two.

Villata cited the quaint example of an apple falling on Isaac Newton’s head. If an anti-apple falls on an anti-Earth, the two will attract and the anti-apple will hit anti-Newton on the head; however, an anti-apple cannot “fall” on regular old Earth, which is made of regular old matter. Instead, the anti-apple will fly away from Earth because of gravity’s change in sign. In other words, if general relativity is, in fact, CPT invariant, antigravity would cause particles and antiparticles to mutually repel. On a much larger scale, Villata claims that the universe is expanding because of this powerful repulsion between matter and antimatter.

What about the fact that matter and antimatter are known to annihilate each other? Villata resolved this paradox by placing antimatter far away from matter, in the enormous voids between galaxy clusters. These voids are believed to have stemmed from tiny negative fluctuations in the primordial density field and do seem to possess a kind of antigravity, repelling all matter away from them. Of course, the reason astronomers don’t actually observe any antimatter in the voids is still up in the air. In Villata’s words, “There is more than one possible answer, which will be investigated elsewhere.” The research appears in this month’s edition of Europhysics Letters.

Halos Gone MAD

Distribution of dark matter when the Universe was about 3 billion years old, obtained from a numerical simulation of galaxy formation. The left panel displays the continuous distribution of dark matter particles, showing the typical wispy structure of the cosmic web, with a network of sheets and filaments, while the right panel highlights the dark matter halos representing the most efficient cosmic sites for the formation of star-bursting galaxies with a minimum dark matter halo mass of 300 billion times that of the Sun. Credit: VIRGO Consortium/Alexandre Amblard/ESA

[/caption]

One of the successes of the ΛCDM model of the universe is the ability for models to create structures of with scales and distributions similar to those we view in the universe today. Or, at least that’s what astronomers tell us. While computer simulations can recreate numerical universes in a box, interpreting these mathematical approximations is a challenge in and of itself. To identify the components of the simulated space, astronomers have had to develop tools to search for structure. The results has been nearly 30 independent computer programs since 1974. Each promises to reveal the forming structure in the universe by finding regions in which dark matter halos form. To test these algorithms out, a conference was arranged in Madrid, Spain during the May of 2010 entitled “Haloes going MAD” in which 18 of these codes were put to the test to see how well they stacked up.

Numerical simulations for universes, like the famous Millennium Simulation begin with nothing more than “particles”. While these were undoubtedly small on a cosmological scale, such particles represent blobs of dark matter with millions or billions solar masses. As time is run forwards, they are allowed to interact with one another following rules that coincident with our best understanding of physics and the nature of such matter. This leads to an evolving universe from which astronomers must use the complicated codes to locate the conglomerations of dark matter inside which galaxies would form.

One of the main methods such programs use is to search for small overdensities and then grow a spherical shell around it until the density falls off to a negligible factor. Most will then prune the particles within the volume that are not gravitationally bound to make sure that the detection mechanism didn’t just seize on a brief, transient clustering that will fall apart in time. Other techniques involve searching other phase spaces for particles with similar velocities all nearby (a sign that they have become bound).

To compare how each of the algorithms fared, they were put through two tests. The first, involved a series of intentionally created dark matter halos with embedded sub-halos. Since the particle distribution was intentionally placed, the output from the programs should correctly find the center and size of the halos. The second test was a full fledged universe simulation. In this, the actual distribution wouldn’t be known, but the sheer size would allow different programs to be compared on the same data set to see how similarly they interpreted a common source.

In both tests, all the finders generally performed well. In the first test, there were some discrepancies based on how different programs defined the location of the halos. Some defined it as the peak in density, while others defined it as a center of mass. When searching for sub-halos, ones that used the phase space approach seemed to be able to more reliably detect smaller formations, yet did not always detect which particles in the clump were actually bound. For the full simulation, all algorithms agreed exceptionally well. Due to the nature of the simulation, small scales weren’t well represented so the understanding of how each detect these structures was limited.

The combination of these tests did not favor one particular algorithm or method over any other. It revealed that each generally functions well with regard to one another. The ability for so many independent codes, with independent methods means that the findings are extremely robust. The knowledge they pass on about how our understanding of the universe evolves allows astronomers to make fundamental comparisons to the observable universe in order to test the such models and theories.

The results of this test have been compiled into a paper that is slated for publication in an upcoming issue of the Monthly Notices of the Royal Astronomical Society.