Remnants of the first stars have helped astronomers get closer to unlocking the “dark ages” of the cosmos. A team of researchers from the University of Cambridge and California Institute of Technology are using light emitted from massive black holes called quasars to “light up” gases released by the early stars, which exploded billions of years ago. As a result, they have found what they refer to as the missing link in the evolution of the chemical universe.
The first stars are believed to hold the key to one of the mysteries of the early cosmos: how it evolved from being predominantly filled with hydrogen and helium to a universe rich in heavier elements, such as oxygen, carbon and iron.
However, although telescopes can detect light reaching Earth from billions of light-years away, enabling astronomers to look back in time over almost all of the 13.7-billion-year history of the universe, one observational frontier remains: the so-called “dark ages.” This period, lasting half a billion years after the Big Bang, ended when the first stars were born and is inaccessible to telescopes because the clouds of gas that filled the universe were not transparent to visible and infrared light.
“We have effectively been able to peer into the dark ages using the light emitted from a quasar in a distant galaxy billions of years ago. The light provides a backdrop against which any gas cloud in its path can be measured,” said Professor Max Pettini at Cambridge’s Institute of Astronomy (IoA), who led the research with PhD student Ryan Cooke.
Taking precision measurements using the world’s largest telescopes in Hawaii and Chile, the researchers have used Quasar Absorption Line Spectroscopy to identify gas clouds called ‘damped Lyman alpha systems’ (DLAs). Among the thousands of DLAs known, the team have succeeded in finding a rare cloud released from a star very early in the history of the universe.
“As judged by its composition, the gas is a remnant of a star that exploded as much as 13 billion years ago,” Pettini explained. “It provides the first analysis of the interior of one of the universe’s earliest stars.”
The results provide experimental observations of a time that has so far been possible to model only with computers simulations, and will help astronomers to fill gaps in understanding how the chemical universe evolved.
“We discovered tiny amounts of elements present in the cloud in proportions that are very different from their relative proportions in normal stars today. Most significantly, the ratio of carbon to iron is 35 times greater than measured in the Sun,” Pettini said. “The composition enables us to infer that the gas was released by a star 25 times more massive than the Sun and originally consisting of only hydrogen and helium. In effect this is a fossil record that provides us with a missing link back to the early universe.”
The study was published in Monthly Notices of the Royal Astronomical Society by Ryan Cooke, Max Pettini and Regina Jorgenson at the IoA, together with Charles Steidel and Gwen Rudie at the California Institute of Technology in Pasadena.
In the realm of far out ideas in science, the notion of a multiverse is one of the stranger ones. Astronomers and physicists have considered the possibility that our universe may be one of many. The implications of this are somewhat more fuzzy. Nothing in physics prevents the possibilities of outside universes, but neither has it helped to constrain them, leaving scientists free to talk of branes and bubbles. Many of these ideas have been considered untestable, but a paper uploaded to arXiv last month considers the effects of two universes colliding and searches for fingerprints of such a collision of our own universe. Surprisingly, the team reports that they may have detected not one, but four collisional imprints.
Have scientists seen evidence of time before the Big Bang, and perhaps a verification of the idea of the cyclical universe? One of the great physicists of our time, Roger Penrose from the University of Oxford, has published a new paper saying that the circular patterns seen in the WMAP mission data on the Cosmic Microwave Background suggest that space and time perhaps did not originate at the Big Bang but that our universe continually cycles through a series of “aeons,” and we have an eternal, cyclical cosmos. His paper also refutes the idea of inflation, a widely accepted theory of a period of very rapid expansion immediately following the Big Bang.
Penrose says that inflation cannot account for the very low entropy state in which the universe was thought to have been created. He and his co-author do not believe that space and time came into existence at the moment of the Big Bang, but instead, that event was just one in a series of many. Each “Big Bang” marked the start of a new aeon, and our universe is just one of many in a cyclical Universe, starting a new universe in place of the one before.
Penrose’s co-author, Vahe Gurzadyan of the Yerevan Physics Institute in Armenia, analyzed seven years’ worth of microwave data from WMAP, as well as data from the BOOMERanG balloon experiment in Antarctica. Penrose and Gurzadyan say they have identified regions in the microwave sky where there are concentric circles showing the radiation’s temperature is markedly smaller than elsewhere.
These circles allow us to “see through” the Big Bang into the aeon that would have existed beforehand. The circles were created when black holes “encountered” or collided with a previous aeon.
“Black-hole encounters, within bound galactic clusters in that previous aeon, would have the observable effect, in our CMB sky,” the duo write in their paper, “of families of concentric circles over which the temperature variance is anomalously low.”
And these circles don’t jive with the idea of inflation, because inflation proposes that the distribution of temperature variations across the sky should be Gaussian, or random, rather than having discernable structures within it.
Penrose’s new theory even projects how the distant future might emerge, where things will again be similar to the beginnings of the Universe at the Big Bang where the Universe was smooth, as opposed to the current jagged form. This continuity of shape, he maintains, will allow a transition from the end of the current aeon, when the universe will have expanded to become infinitely large, to the start of the next, when it once again becomes infinitesimally small and explodes outwards from the next big bang.
Penrose and Gurzadyan say that the entropy at the transition stage will be very low, because black holes, which destroy all information that they suck in, evaporate as the universe expands and in so doing remove entropy from the universe.
“These observational predictions of (Conformal cyclic cosmology) CCC would not be easily explained within standard inflationary cosmology,” they write in their paper.
Cosmology is a fairly young science, one which attempts to reconstruct the history of our Universe from billions of years ago. Looking back so far in time is extremely difficult, and adding to the complexity is that many of the pillars upon which the theories of cosmology rest have only been conceived within the last 20 years or so. That hasn’t given scientists and theorists much time to fully flesh out and comprehend the situation, and cosmologist Michael Turner says either some important new physics will have to be discovered or we’re going to find a fatal flaw in our prevailing view of the Universe.
So, what will it take to push cosmology over the edge, where it goes fully from theory to science, and we have at least a grasp of cosmological understanding? I had the chance to ask that question to Turner at last week’s National Association of Science Writers conference. Turner, who coined the term “dark energy,” is the Director of the Kavli Institute for Cosmological Physics at the University of Chicago. Here are his top four wishes for discoveries in cosmology:
Wish # 1: Figure out the nature of dark matter.
“I think we’re very close to solving this dark matter problem and I think its going to be stunning when it sinks in to everyone that most of the stuff in the Universe is made of something other than what we are,” Turner said.
Dark matter holds universe together, according to cosmologists. But since it does not emit electromagnetic radiation and we can’t see it, how do we know it is there? “It is needed to hold galaxies together, it is needed to hold clusters together, it is that simple,” Turner said. “There is not enough gravity in all the stars put together to hold clusters together.”
Turner has likened dark matter to an outdoor tree decorated with Christmas lights. From far away, all that can be seen are the lights, but it is the unseen tree that holds the lights where they are and gives them their shape. More poetically Turner said, “The universe is a web of dark matter that is decorated by stars.”
Turner made a bold prediction: “The 2010 is the decade of dark matter – we are going to finish this thing off.”
Wish # 2. Figure out the nature of dark energy.
“Dark energy may be most profound problem in cosmology today, and I’ve been wandering around for 10 years saying this,” Turner said. “If dark matter holds the Universe together, dark energy controls its destiny.”
Dark energy likely makes up 66% of the cosmos, and it’s existence has only been theorized since 1998 when astronomers realized that contrary to the prevailing notion that the expansion of the universe should be slowing down, it is actually moving faster as time goes on.
What is the current theoretical understanding of dark energy? “We don’t have a clue,” said Turner. “But let me go out here on a limb with dark energy, and say we may find it is not vacuum energy. Vacuum energy is mathematical equivalent to Einstein’s cosmological constant, and I hope we’ll figure out it is something weirder than the energy of nothing. That doesn’t solve the problem, but it would be a gift to my younger colleagues, because science is all about big questions and they need clues and something big they can sink their teeth into.”
Yes, dark energy is a big problem, but for theorists it’s a big opportunity. However, Turner has some doubts. “Dark energy is one of the big questions that will occupy the next decade, and I don’t know if we’ll be able to solve it,” he said.
Wish # 3: Confirming inflation with the discovery of B-Mode polarization.
Our current best theory about the earliest moments of the universe is called inflation, where during a tiny fraction of a second after the Big Bang, the Universe appears to have expanded exponentially. In particular, high precision measurements of the so-called B-modes (evidence of gravity waves) of the polarization of the cosmic microwave background radiation would be evidence of the gravitational radiation produced by inflation, and they will also show whether the energy scale of inflation predicted by the simplest models is correct.
“That is the smoking gun for inflation.” said Turner. “It explains where all the structure came from – that quantum mechanical fluctuations at the subatomic scale were blown up by this enormous expansion. That is an amazing idea, and in one equation we could figure out exactly when inflation took place. You’ll notice in all our talk of inflation no one ever tells you when it took place, because we don’t know. But those B-modes would tell us.”
Wish #4. Make the mulitiverse go away.
If there was inflation, that means there is also very likely a multitude of Universes out there.
Turner called the concept of the multiverse the 800 lb gorilla in the room.
“The dilemma is, we have evidence that inflation took place and the equations of inflation say that if it took place once, it took place twice and it’s sort of like the mouse and the cookie – if it took place twice it could have taken place an infinite number of times,” he said.
The multiverse hypothesizes multiple universes or parallel universes comprise everthing that is, not just our one “local” universe. “If there is a mulitverse structure, and if you marry this with string theory you end up with a picture of a Universe where there might be different local laws of physics and the different sub-universes might be incredibly different from each other – differences in space and time, some don’t have stable particles, many don’t have life, and so on. This is an incredibly bold idea and may even be the most important idea since Copernicus.”
But, Turner asked, how do you test it? “And if you can’t test it, therefore you can’t call it science,” he said. “So I call it the mulitiverse headache – you have this incredibly important idea, but is it science?”
“That’s where we are in cosmology,” he said. “We are the blind cosmologists feeling the Universe and each piece of data describes something. There are still big questions to be answered, and what we’re doing in cosmology is trying to put it all together, and we might actually, in the next 10-15 years put it all together. That is absolutely amazing; the universe is very big and our abilities are very primitive. But look what we’ve done so far.”
Ever wonder why we are here, how and why the universe that we inhabit came to be, and what our place is in it? If so, than in addition to philosophy, religion, and esotericism, you might be interested in the field of Cosmology. This is, in the strictest sense, the study of the universe in its totality, as it is today, and what humanity’s place is in it. Although a relatively recent invention from a purely scientific point of view, it has a long history which embraces several fields over the course of many thousand years and countless cultures.
In western science, the earliest recorded examples of cosmology are to be found in ancient Babylon (circa 1900 – 1200 BCE), and India (1500 -1200 BCE). In the former case, the creation myth recovered in the EnûmaEliš held that the world existed in a “plurality of heavens and earths” that were round in shape and revolved around the “cult place of the deity”. This account bears a strong resemblance to the Biblical account of creation as found in Genesis. In the latter case, Brahman priests espoused a theory in which the universe was timeless, cycling between expansion and total collapse, and coexisted with an infinite number of other universes, mirroring modern cosmology.
The next great contribution came from the Greeks and Arabs. The Greeks were the first to stumble onto the concept of a universe that was made up of two elements: tiny seeds (known as atoms) and void. They also suggested, and gravitated between, both a geocentric and heliocentric model. The Arabs further elaborated on this while in Europe, scholars stuck with a model that was a combination of classical theory and Biblical canon, reflecting the state of knowledge in medieval Europe. This remained in effect until Copernicus and Galileo came onto the scene, reintroducing the west to a heliocentric universe while scientists like Kepler and Sir Isaac Newton refined it with their discovery of elliptical orbits and gravity.
The 20th century was a boon for cosmology. Beginning with Einstein, scientists now believed in an infinitely expanding universe based on the rules of relativity. Edwin Hubble then demonstrated the scale of the universe by proving that “spiral nebulae” observed in the night sky were actually other galaxies. By showing how they were red-shifted, he also demonstrated that they were moving away, proving that the universe really was expanding. This in turn, led to the Big Bang theory which put a starting point to the universe and a possible end (echoes of the Braham expansion/collapse model).
Today, the field of cosmology is thriving thanks to ongoing research, debate and continuous discovery, thanks in no small part to ongoing efforts to explore the known universe.
We have written many articles about cosmology for Universe Today. Here’s an article about the galaxy, and here are some interesting facts about stars.
Cosmologists – and not particle physicists — could be the ones who finally measure the mass of the elusive neutrino particle. A group of cosmologists have made their most accurate measurement yet of the mass of these mysterious so-called “ghost particles.” They didn’t use a giant particle detector but used data from the largest survey ever of galaxies, the Sloan Digital Sky Survey. While previous experiments had shown that neutrinos have a mass, it is thought to be so small that it was very hard to measure. But looking at the Sloan data on galaxies, PhD student Shawn Thomas and his advisers at University College London put the mass of a neutrino at no greater than 0.28 electron volts, which is less than a billionth of the mass of a single hydrogen atom. This is one of the most accurate measurements of the mass of a neutrino to date.
Their work is based on the principle that the huge abundance of neutrinos (there are trillions passing through you right now) has a large cumulative effect on the matter of the cosmos, which naturally forms into “clumps” of groups and clusters of galaxies. As neutrinos are extremely light they move across the universe at great speeds which has the effect of smoothing this natural “clumpiness” of matter. By analysing the distribution of galaxies across the universe (i.e. the extent of this “smoothing-out” of galaxies) scientists are able to work out the upper limits of neutrino mass.
A neutrino is capable of passing through a light year –about six trillion miles — of lead without hitting a single atom.
Central to this new calculation is the existence of the largest ever 3D map of galaxies, called Mega Z, which covers over 700,000 galaxies recorded by the Sloan Digital Sky Survey and allows measurements over vast stretches of the known universe.
“Of all the hypothetical candidates for the mysterious Dark Matter, so far neutrinos provide the only example of dark matter that actually exists in nature,” said Ofer Lahav, Head of UCL’s Astrophysics Group. “It is remarkable that the distribution of galaxies on huge scales can tell us about the mass of the tiny neutrinos.”
The Cosmologists at UCL were able to estimate distances to galaxies using a new method that measures the colour of each of the galaxies. By combining this enormous galaxy map with information from the temperature fluctuations in the after-glow of the Big Bang, called the Cosmic Microwave Background radiation, they were able to put one of the smallest upper limits on the size of the neutrino particle to date.
“Although neutrinos make up less than 1% of all matter they form an important part of the cosmological model,” said Dr. Shaun Thomas. “It’s fascinating that the most elusive and tiny particles can have such an effect on the Universe.”
“This is one of the most effective techniques available for measuring the neutrino masses,” said Dr. Filipe Abadlla. “This puts great hopes to finally obtain a measurement of the mass of the neutrino in years to come.”
The authors are confident that a larger survey of the Universe, such as the one they are working on called the international Dark Energy Survey, will yield an even more accurate weight for the neutrino, potentially at an upper limit of just 0.1 electron volts.
The results are published in the journal Physical Review Letters.
Need more evidence that the expansion of the Universe is accelerating? Just look to the Hubble Space Telescope. An international team of astronomers has indeed confirmed that the expansion of the universe is accelerating. The team, led by Tim Schrabback of the Leiden Observatory, conducted an intensive study of over 446,000 galaxies within the COSMOS (Cosmological Evolution Survey) field, the result of the largest survey ever conducted with Hubble. In making the COSMOS survey, Hubble photographed 575 slightly overlapping views of the same part of the Universe using the Advanced Camera for Surveys (ACS) onboard the orbiting telescope. It took nearly 1,000 hours of observations.
In addition to the Hubble data, researchers used redshift data from ground-based telescopes to assign distances to 194,000 of the galaxies surveyed (out to a redshift of 5). “The sheer number of galaxies included in this type of analysis is unprecedented, but more important is the wealth of information we could obtain about the invisible structures in the Universe from this exceptional dataset,” said co-author Patrick Simon from Edinburgh University.
In particular, the astronomers could “weigh” the large-scale matter distribution in space over large distances. To do this, they made use of the fact that this information is encoded in the distorted shapes of distant galaxies, a phenomenon referred to as weak gravitational lensing. Using complex algorithms, the team led by Schrabback has improved the standard method and obtained galaxy shape measurements to an unprecedented precision. The results of the study will be published in an upcoming issue of Astronomy and Astrophysics.
The meticulousness and scale of this study enables an independent confirmation that the expansion of the Universe is accelerated by an additional, mysterious component named dark energy. A handful of other such independent confirmations exist. Scientists need to know how the formation of clumps of matter evolved in the history of the Universe to determine how the gravitational force, which holds matter together, and dark energy, which pulls it apart by accelerating the expansion of the Universe, have affected them. “Dark energy affects our measurements for two reasons. First, when it is present, galaxy clusters grow more slowly, and secondly, it changes the way the Universe expands, leading to more distant — and more efficiently lensed — galaxies. Our analysis is sensitive to both effects,” says co-author Benjamin Joachimi from the University of Bonn. “Our study also provides an additional confirmation for Einstein’s theory of general relativity, which predicts how the lensing signal depends on redshift,” adds co-investigator Martin Kilbinger from the Institut d’Astrophysique de Paris and the Excellence Cluster Universe.
The large number of galaxies included in this study, along with information on their redshifts is leading to a clearer map of how, exactly, part of the Universe is laid out; it helps us see its galactic inhabitants and how they are distributed. “With more accurate information about the distances to the galaxies, we can measure the distribution of the matter between them and us more accurately,” notes co-investigator Jan Hartlap from the University of Bonn. “Before, most of the studies were done in 2D, like taking a chest X-ray. Our study is more like a 3D reconstruction of the skeleton from a CT scan. On top of that, we are able to watch the skeleton of dark matter mature from the Universe’s youth to the present,” comments William High from Harvard University, another co-author.
The astronomers specifically chose the COSMOS survey because it is thought to be a representative sample of the Universe. With thorough studies such as the one led by Schrabback, astronomers will one day be able to apply their technique to wider areas of the sky, forming a clearer picture of what is truly out there.
Paper: Schrabback et al., ‘Evidence for the accelerated expansion of the Universe from weak lensing tomography with COSMOS’, Astronomy and Astrophysics, March 2010,
First, some simple answers: space is everything in the universe beyond the top of the Earth’s atmosphere – the Moon, where the GPS satellites orbit, Mars, other stars, the Milky Way, black holes, and distant quasars. Space also means what’s between planets, moons, stars, etc – it’s the near-vacuum otherwise known as the interplanetary medium, the interstellar medium, the inter-galactic medium, the intra-cluster medium, etc; in other words, it’s very low density gas or plasma (‘space physics’ is, in fact, just a branch of plasma physics!).
But you really want to know what space is, don’t you? You’re asking about the thing that’s like time, or mass.
And one simple, but profound, answer to the question “What is space?” is “that which you measure with a ruler”. And why is this a profound answer? Because thinking about it lead Einstein to develop first the theory of special relativity, and then the theory of general relativity. And those theories overthrew an idea that was built into physics since before the time of Newton (and built into philosophy too); namely, the idea of absolute space (and time). It turns out that space isn’t something absolute, something you could, in principle, measure with lots of rulers (and lots of time), and which everyone else who did the same thing would agree with you on.
Space, in the best theory of physics on this topic we have today – Einstein’s theory of general relativity (GR) – is a component of space-time, which can be described very well using the math in GR, but which is difficult to envision with our naïve intuitions. In other words, “What is space?” is a question I can’t really answer, in the short space I have in this Guide to Space article.
[/caption]
The cosmological constant, symbol Λ (Greek capital lambda), was ‘invented’ by Einstein, not long after he published his theory of general relativity (GR). It appears on the left-hand side of the Einstein field equations.
Einstein added this term because he – along with all other astronomers and physicists of the time – thought the universe was static (the cosmological constant can make a universe filled with mass-energy static, neither expanding nor contracting). However, he very quickly realized that this wouldn’t work, because such a universe would be unstable … and quickly turn into one either expanding or contracting! Not long afterwards, Hubble (actually Vesto Slipher) discovered that the universe is, in fact, expanding, so the need for a cosmological constant went away.
Until 1998.
In that year, two teams of astronomers independently announced that distant Type Ia supernovae did not have the apparent luminosity they should, in a universe composed almost entirely of mass-energy in the form of baryons (ordinary matter) and cold dark matter.
Dark Energy had been discovered: dark energy is a form of mass-energy that has a constant density throughout the universe, and perhaps throughout time as well; counter-intuitively, it causes the expansion of the universe to accelerate (i.e. it acts kinda like anti-gravity). The most natural form of dark energy is the cosmological constant.
A great deal of research has gone into trying to discover if dark energy is, in fact, just the cosmological constant, or if it is quintessence, or something else. So far, results from observations of the CMB (by WMAP, mainly), of BAO (baryon acoustic oscillations, by extensive surveys of galaxies), and of high-redshift supernovae (by many teams) are consistent with dark energy being the cosmological constant.
So if the cosmological constant is (a) mass-energy (density), it can be expressed as kilograms (per cubic meter), can’t it? Yes, and the best estimate today is 7.3 x 10-27 kg m 3.
The Big Bang timeline is basically just a list of relative times at which the major events in the history of the universe occurred, per the collection of theories, models, and hypotheses which together form what is called the Big Bang theory.
The start – when time began, when t = 0 – is not actually part of the Big Bang timeline (!), contrary to popular belief. That’s because the two theories of physics which are at the heart of the Big Bang theory – General Relativity (GR) and the Standard Model (of particle physics; SM for short) – are mutually incompatible, and that incompatibility becomes so intolerable that saying anything about what happened in the first Planck second (approx 10-43 second) is meaningless.
In fact, the closer to the Planck regime – when GR and the SM are utterly incompatible – the less reliable are our descriptions … but the relative times are nonetheless pretty good.
Actually, that’s not quite true … what is relatively certain are temperatures; forces, matter, and radiation interact in very distinct ways, depending on the temperature (and pressure, or density), but converting from temperature back to time depends on various parameters which are not so well pinned down. However, once the average mass-energy density of the universe, today, is estimated, the clock can be wound back with some confidence (it’s ~six hydrogen atoms per cubic meter, or about 7 x 10-27 kg/m3).
Around 10-35 seconds leptons and baryons were created (the strong force became a distinct force), and inflation caused the universe to expand so much that the part which later became our observable universe was both flat (no curvature, in the GR sense) and incredibly smooth (with only tiny variations in density due to quantum effects).
At around 10-11 seconds the electromagnetic and weak force became distinct.
And by about a microsecond the universe underwent another phase change … it was no longer a quark-gluon plasma, but hadrons formed (protons and neutrons).
When t = 1 second (more or less), nuclear reactions produced light nuclides, such as deuterium and helium-3 (before this time the universe was too hot for them to form) – Big Bang nucleosynthesis.
The earliest part of the universe we can still see, directly, happened when the electrons and protons (and other nuclei) combined to form hydrogen atoms; this is the recombination era, and we see it today as the cosmic microwave background … and gravity took over as the dominant force (before this it was electromagnetism – the universe was ‘radiation dominated’ – and before that, at the time of nucleosynthesis, the strong and weak forces ruled).
The rest, as they say, is history … the Dark Ages (during which the first stars were formed), the era of recombination (when stars and quasars ionized the diffuse hydrogen), galaxy formation, … and then about 13.4 billion years later we observed the skies and worked out the timeline!
There’s a lot of good material on the web on the Big Bang timeline; here are some: John Baez (who’s always worth reading) has a brief timeline, in terms of temperature; there’s a more extensive one from the University of Wisconsin-Madison, and perhaps the best, A Brief History of the Universe (University of Cambridge).