See Venus at Her Most Ravishing

Venus dwindles to a captivating crescent nearly 1 arc minute across as seen on August 8, 2015. An infrared filter was used to increase contrast between the planet and otherwise bright sky. Credit: SEN / Damian Peach

Venus is HUGE right now but oh-so-skinny as it approaches inferior conjunction on August 15. Like crescents? You’ll never see a thinner and more elegant one, but first you’ll have to find it. Here’s how.

On August 9th, Venus is only 6 days before inferior conjunction when it passes between the Earth and Sun. Shortly before, during and after conjunction, Venus will appear as a wire-thin crescent. Venus will continue moving west of the Sun and rise higher in the morning sky after mid-August with greatest elongation west occuring on October 26. Wikipedia with additions by the author
On August 9th, Venus is only 6 days before inferior conjunction when it passes between the Earth and Sun. Shortly before, during and after conjunction, Venus will appear as a wire-thin crescent. The planet will continue moving west of the Sun and rise higher in the morning sky after mid-August with greatest elongation west occurring on October 26, when its phase will fatten to half.
Wikipedia with additions by the author

There’s only one drawback to enjoying Venus at its radically thinnest — it’s very close to the Sun and visible only during the daytime. A look at the diagram above reveals that as Venus and Earth draw closer, the planet also aligns with the Sun. At conjunction on August 15, it will pass 7.9° south of our star, appearing as an impossibly thin crescent in the solar glare. The sight is unique, a curved strand of incandescent wire burning in the blue.

Venus at inferior conjunction on January 10, 2014 shows both the sunlit crescent and cusp extensions from sunlight penetrating the atmosphere from behind. Credit: Tudorica Alexandru
Venus at inferior conjunction on January 10, 2014 shows both the sunlit crescent and cusp extensions caused by sunlight penetrating the atmosphere from behind. During this previous inferior conjunction, Venus passed north of the Sun, so we see the bottom of the crescent illuminated. Credit: Tudorica Alexandru

If you’re patient and the air is steady, you might even glimpse the cusps of the illuminated crescent extending beyond their normal length to partially or even completely encircle Venus’s disk. These thread-like extensions become visible when the planet lies almost directly between us and the Sun. Sunlight scatters off the Venus’s dense atmosphere, causing it to glow faintly along the limb. One of the most remarkable sights in the sky, the sight is testament to the thickness of the planet’s airy envelope.

Going, going, gone! Or almost. Venus photographed in its beautiful crescent phase on two occasions this past week.
Going, going, gone! Venus photographed in its beautiful crescent phase on two occasions last week. When the planet reaches inferior conjunction this Saturday (August 15),  the crescent will expand to nearly 1 arc minute across. No planet comes closer to Earth than Venus — just 27 million miles this week. Credit: Giorgio Rizzarelli

Today, only 1.7% of the planet is illuminated by the Sun, which shines some 11° to the northwest. The Venusian crescent spans 57 arc seconds from tip to tip, very close to 1 arc minute or 1/30 the width of the Full Moon. Come conjunction day August 15, those numbers will be 0.9% and 58 arc seconds. The angular resolution of the human eye is 1 minute, implying that the planet’s shape might be within grasp of someone with excellent eyesight under a clear, clean, cloudless sky. However — and this is a big however — a bright sky and nearby Sun make this practically impossible.

No worries though. Even 7x binoculars will nail it; the trick is finding Venus in the first place. For binocular users,  hiding the Sun COMPLETELY behind a building, chimney, power pole or tree is essential. The goddess lurks dangerously close to our blindingly-bright star, so you must take every precaution to protect your eyes. Never allow direct sunlight into your glass. Never look directly at the Sun – even for a second – with your eyes or UV and infrared light will sear your retinas. You can use the map provided, which shows several locations of the planet at 1 p.m. CDT when it’s highest in the sky, to help you spot it.

The Sun's position is shown for 1 p.m. local daylight time, while Venus is shown for three dates - today, conjunction date and Aug. 21. As Venus moves from left to right under or south of the Sun, its phase swings from evening crescent (left) to morning crescent from our perspective on Earth. Source: Stellarium with additions by the author
The Sun’s position is shown for 1 p.m. local daylight time facing due south, while Venus and its corresponding phase is depicted before, at and after conjunction. As Venus moves from left to right south of the Sun, its phase changes from evening crescent (left) to morning crescent from our perspective on Earth. Source: Stellarium with additions by the author

If you’d like to see Venus on a different day or time, download a free sky-charting program like Stellarium or Cartes du Ciel. With Stellarium, open the Sky and Viewing Options menu (F4) and click the Light Pollution Level option down to “1” to show Venus in a daytime sky. Pick a viewing time, note Venus’s orientation with respect to the Sun (which you’ve hidden of course!) and look at that spot in the sky with binoculars. I’ll admit, it’s a challenging observation requiring haze-free skies, but be persistent.

By coincidence, the Moon and Venus will be about the same distance from the Sun and appear as exceedingly thin crescents on the afternoon (CDT) of August 13. Source: Stellarium
By coincidence, the Moon and Venus will be about the same distance from the Sun and appear as very similar thin crescents around 1 p.m. CDT on August 13.  Venus should still be visible using the methods described below, but the Moon will be impossible to see. Source: Stellarium

A safer and more sure-fire way to track the planet down involves using those setting circles on your telescope mount most of us never bother with. First, find the celestial coordinates (right ascension and declination) of the Sun and Venus for the time you’d like to view. For example, let’s say we want to find Venus on August 10 at 2 p.m. Using your free software, you click on the Sun and Venus’s positions for that time of day to get their coordinates, in this case:

Venus – Right ascension 9h 42 minutes, declination +6°.
Sun – RA 9h 22 minutes, dec. +15° 30 minutes

Now subtract the two to get Venus’ offset from the Sun = 20 minutes east, 9.5° south.

Dust off those setting circles (declination shown here) and use them to point you to Venus this week. Credit: Bob King
Dust off those setting circles (declination shown here, marked off in degrees) and use them to point you to Venus this week. Credit: Bob King

Next, polar align your telescope using a compass and then cover the objective end with a safe mylar or glass solar filter. Center and sharply focus the Sun in the telescope. Now, loosen the RA lock and carefully offset the right ascension 20 minutes east using your setting circle, then re-lock. Do the same with declination, pointing the telescope 9.5° south of the Sun. If you’re polar alignment is reasonably good, when you remove the solar filter and look through the eyepiece, you should see Venus staring back at you from a blue sky. If you see nothing at first, nudge it a little this way and that to bring the planet into view.

Sometimes it takes me a couple tries, but I eventually stumble arrive on target. Obviously, you can also use this technique to spot Mercury and Jupiter in the daytime, too. By the way, don’t worry what the RA and Dec. read on your setting circles when you begin your hunt; only the offset’s important.

When inferior conjunction occurs at the same time Venus crosses the plane of Earth's orbit, we see a rare transit like this one on June 5, 2012. Credit: Bob King
When inferior conjunction occurs at the same time Venus crosses the plane of Earth’s orbit, we see a rare transit (upper right) like this one on June 5, 2012. Credit: Bob King

This year’s conjunction is one of the best for finding Venus in daylight because it’s relatively far from the Sun. With an orbital inclination of 3.2°, Venus’s position can range up to 8° north and south of the Earth’s orbital plane or ecliptic. Rarely does the planet cross the ecliptic at the same time as inferior conjunction. When it does, we experience a transit of VenusTransits always come in pairs; the last set occurred in 2004 and 2012; the next will happen over 100 years from now in 2117 and 2125.

I hope you’re able to make the most of this opportunity while still respecting your tender retinas. Good luck!

Lunar ‘Fountain of Youth’ Challenge / Mercury Returns with Gusto

A day-old Moon floats over the Spirit Mountain ski hill in Duluth, Minn. this past January. Credit: Bob King

16th century Spanish explorer Juan Ponce de León looked and looked but never did find the Fountain of Youth, a spring rumored to restore one’s youth if you bathed or drank from its waters.  If he had, I might have interviewed him for this story.

Sunday night, another symbol of youth beckons skywatchers the world over. A fresh-faced, day-young crescent Moon will hang in the western sky in the company of the planets Mars and Mercury. While I can’t promise a wrinkle-free life, sighting it may send a tingle down your spine reminding you of why you fell in love with astronomy in the first place. 

Look low in the west-northwest sky Sunday evening April 19 to spot the day-old crescent Moon alongside Mars and returning Mercury. Source: Stellarium
Look low in the west-northwest sky Sunday evening April 19 to spot the day-old crescent Moon alongside Mars and returning Mercury. Brilliant Venus will help you get oriented. This map shows the sky around 40 minutes after sunset but you can start as early as 30 minutes especially if you’re using binoculars. Source: Stellarium

The Moon reaches New Moon phase on Saturday, April 18 during the early afternoon for North and South America. By sunset Sunday, the fragile crescent will be about 29 hours old as seen from the East Coast, 30 for the Midwest, 31 for the mountain states and 32 hours for the West Coast. Depending on where you live, the Moon will hover some 5-7° (three fingers held at arm’s length) above the northwestern horizon 40 minutes after sunset. To make sure you see it, find a location with a wide-open view to the west-northwest.

Earthshine gets easier to see once the Moon moves a little further from the Sun and into a dark sky. Our planet provides enough light to spot some of the larger craters. Credit: Bob King
Earthshine gets easier to see as the Moon moves further from the Sun and the crescent fills out a bit. Our planet provides enough light to spot some of the larger craters. Credit: Bob King

While the crescent is illuminated by direct sunlight, you’ll also see the full outline of the Moon thanks to earthshine. Sunlight reflected off Earth’s globe faintly illuminates the portion of the Moon not lit by the Sun. Because it’s twice-reflected, the light looks more like twilight. Ghostly. Binoculars will help you see it best.

Now that you’ve found the dainty crescent, slide your eyes (or binoculars) to the right. That pinpoint of light just a few degrees away is Mars, a planet that’s lingered in the evening sky longer than you’ve promised to clean out the garage. The Red Planet shone brightly at opposition last April but has since faded and will soon be in conjunction with the Sun. Look for it to return bigger and brighter next May when it’s once again at opposition.

Diagram showing Mercury's position and approximate altitude above the horizon during the current apparition. Also shown are the planet's phases, which are visible in a telescope. Credit: Stellarium, Bob King
Diagram showing Mercury’s position and approximate altitude above the horizon during the current apparition. Also shown are the planet’s changing phases, which are visible in a telescope. Credit: Stellarium, Bob King

To complete the challenge, you’ll have to look even lower in the west to spot Mercury. Although brighter than Vega, it’s only 3° high 40 minutes after sunset Sunday. Its low altitude makes it Mercury is only just returning to the evening sky in what will become its best appearance at dusk for northern hemisphere skywatchers in 2015.

As an inner planet, Mercury goes through phases just like Venus and the Moon. We see it as everything from a crescent to a "full moon" as it angle to the Sun changes during its 88-day orbit. Credit: ESO
As an inner planet, Mercury goes through phases just like Venus and the Moon. We see it morph from crescent to “full moon” as its angle to the Sun changes during its revolution of the Sun. Credit: ESO

Right now, because of altitude, the planet’s a test of your sky and observing chops, but let the Moon be your guide on Sunday and you might be surprised. In the next couple weeks, Mercury vaults from the horizon, becoming easier and easier to see.  Greatest elongation east of the Sun occurs on the evening of May 6. Although the planet will be highest at dusk on that date, it will have faded from magnitude -0.5 to +1.2. By the time it leaves the scene in late May, it will become very tricky to spot at magnitude +3.5.

Mercury’s a bit different from Venus, which is brighter in its crescent phase and faintest at “full”. Mercury’s considerably smaller than Venus and farther from the Earth, causing it to appear brightest around full phase and faintest when a crescent, even though both planets are largest and closest to us when seen as crescents.

Not to be outdone by Venus earlier this month, Mercury passes a few degrees south of the Pleiades star cluster on April 29. The map shows the sky facing northwest about 50 minutes after sunset. Source: Stellarium
Not to be outdone by the Venus-Pleiades conjunction earlier this month, Mercury passes a few degrees south of the star cluster on April 29. The map shows the sky facing northwest about 50 minutes after sunset. Source: Stellarium

Venus makes up for its dwindling girth by its size and close proximity to Earth. It also doesn’t hurt that it’s covered in highly reflective clouds. Venus reflects about 70% of the light it receives from the Sun; Mercury’s a dark world and gives back just 7%. That’s dingier than the asphalt-toned Moon!

Good luck in your mercurial quest. We’d love to hear your personal stories of the hunt — just click on Comments.

Venus Slip-Slides Away – Catch it While You Can!

Venus reflected in the Pacific Ocean late this fall seen from the island of Maui, Hawaii. The planet is now quickly dropping toward the sun. Credit: Bob King

I put down down the snow shovel to give my back a rest yesterday evening and couldn’t believe what I saw. Or didn’t see. Where was Venus? I looked to the south above the tree line and the goddess was gone! Sweeping my gaze to the right I found her again much closer to the western horizon point and also much lower.

As Venus revolves around the sun interior to the Earth's orbit, we see it pass through phases just like the moon. Tonight it's still to the east of the sun (left side) and visible in the evening sky. On Jan. 11 it passes through conjunction and then appears on the other side of the sun in the morning sky. Illustration: Bob King
As Venus revolves around the sun interior to Earth’s orbit, we see it pass through phases just like the moon. Tonight it’s still to the east of the sun (left side) and visible in the evening sky. On Jan. 11 it passes through conjunction and then appears on the other side of the sun in the morning sky. Illustration: Bob King

As 2013 gives way to the new year, Venus winds up its evening presentation as it prepares to transition to the morning sky. Catch it while you can. Each passing night sees the planet dropping ever closer to the horizon as its apparent distance from the sun shrinks.  On January 11 it will pass through inferior conjunction as it glides between Earth and sun. Come the 12th, Venus nudges into the dawn sky – don’t expect to see it with the naked eye until around midmonth, when it’s far enough from the sun to bust through the twilight glare.

Phases of Venus during 2004 photographed through a telescope. When very close to inferior conjunction (bottom right) the crescent is seen to extend fully around the planet. Credit: Statis Kalyva / Wikipedia
Phases of Venus during 2004 photographed through a telescope. When very close to inferior conjunction (bottom right) the crescent is seen to extend fully around the planet. Credit: Statis Kalyva / Wikipedia

Though the planet is departing, don’t let it disappear without at least a glance through binoculars. As conjunction approaches, Venus gets as close (and as large) as it can get to Earth and displays a most attractive crescent phase. Even 7x binoculars will show its thinning sickle shortly at dusk. Tonight (Dec. 27) Venus measures nearly 1 arc minute in diameter or  1/30 the width of the full moon and shines brightly at magnitude -4.5.

Venus is only about 12 degrees high in the southwestern sky some 20 minutes after sunset this evening Dec. 27. Stellarium
Venus is only about 12 degrees high in the southwestern sky some 20 minutes after sunset this evening Dec. 27. Stellarium

As the planet drops ever lower, the crescent grows both larger and thinner. A few days before conjunction, a telescope will show it extending beyond the usual 180-degree arc as sunlight beaming from behind Venus is scattered by the planet’s thick cloudy atmosphere.

When the air is transparent and seeing steady, amateur astronomers have photographed and observed the crescent wrapping a full 360 degrees around the planet’s disk – a sight quite unlike anything else in the sky.

Before Venus departs the evening sky watch for it to pair up with a very thin crescent moon shortly after sunset on Jan. 2, 2014.  Stellarium
Before Venus departs the evening sky, watch for it to pair up with a very thin crescent moon shortly after sunset on Jan. 2, 2014. Stellarium

In the coming week, watch for Venus starting about 15 minutes after sunset low in the southwestern sky. With each day, the planet becomes slightly less conspicuous as it competes against the twilight glow.

After final farewells late next week, we’ll look forward in the new year to welcoming the goddess in her new guise as morning star.

 

A Crescent Moon in the Martian Sky

Raw image of Phobos above Mars, taken by Curiosity's Mastcam in September 2012. Credit: NASA/JPL-Caltech

Mars’ moon Phobos is captured in a daytime image by Curiosity (NASA/JPL-Caltech/MSSS)

A raw image taken on September 21 by Curiosity’s right Mastcam shows a daytime view of the Martian sky with a crescent-lit Phobos in the frame… barely visible, yes, but most certainly there. Very cool!

The image above is a crop of the original, contrast-enhanced and sharpened to bring out as much detail as possible.

The 13-km-wide Phobos has been spotted several times before by Mars rovers, most recently during a solar transit on September 13 (sol 37) but I’m not sure if it’s ever been clearly captured on camera during the day before (i.e., not passing in front of the Sun.) If not, this will be a first!

See the latest news from the Curiosity mission here.

Added 9/28: According to Universe Today publisher Fraser Cain, this is “the most dramatic space picture of the year”… whether you agree or not, hear what he had to say on this and other recent news during the September 27 episode of the Weekly Space Hangout.