SpaceX Falcon 9 and Dragon CRS-6 set for April 13 Launch to ISS and Historic Landing Attempt

Infographic shows how SpaceX Falcon 9 will fly back to Earth after next launch on CRS-6 mission to ISS. Credit: SpaceX

KENNEDY SPACE CENTER, FL – Now just a day away, all systems are “GO” for blastoff of the next SpaceX Falcon 9 rocket carrying the Dragon CRS-6 cargo capsule on Monday, April 13, on a mission to the International Space Station (ISS) and a near simultaneous historic attempt to soft land the boosters first stage on a barge in a remote area of the Atlantic Ocean, hundreds of miles offshore from the US eastern seaboard.

In advance of Mondays launch attempt, SpaceX engineers successfully completed the practice countdown dress rehearsal and required static fire engine test this afternoon, Saturday, April 11, to ensure everything is ready with the rocket and first Stage Merlin 1-D engines for a safe and successful mission to the orbiting outpost.

The Dragon capsule has already been loaded with most of the cargo bound for the space station and was mated to the Falcon 9 booster earlier this week.

Although it is raining heavily now around the Florida Space Coast region along with multiple tornado warning threats, NASA and SpaceX officials are hopeful that weather conditions will clear sufficiently to permit Monday’s planned launch.

U.S. Air Force weather forecasters from the 45th Weather Squadron currently rate the chances of favorable conditions at launch time as 60 percent GO for liftoff of the sixth SpaceX commercial resupply services mission (CRS-6) to the ISS.

Static fire engine test completed on April 11, 2015 in advance of April 13 launch attempt to the International Space Station. Credit: SpaceX
Static fire engine test completed on April 11, 2015 in advance of April 13 launch attempt to the International Space Station. Credit: SpaceX

SpaceX and NASA are targeting blastoff of the Falcon 9 and Dragon CRS-6 spacecraft for Monday, April 13, slated at approximately 4:33 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

NASA Television plans live launch coverage starting at 3:30 p.m EDT: http://www.nasa.gov/multimedia/nasatv/index.html

SpaceX also plans live launch coverage beginning at 4:15pm EDT: www.spacex.com/webcast

The launch window is instantaneous, meaning that the rocket must liftoff at the precisely appointed time. Any delays due to weather or technical factors will force a scrub.

If all goes well with Mondays launch attempt, the Dragon spacecraft will rendezvous with the Earth orbiting outpost Wednesday, April 15, after a two day orbital chase.

In the event of a scrub for any reason, the backup launch day is 24 hours later on Tuesday, April 14, at approximately 4:10 p.m.

The Falcon 9 first stage is outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX. Cargo delivery to the station is the overriding primary objective and the entire reason for the CRS-6 mission.

The SpaceX plan is to direct the spent 1st stage on a precision guided rocket assisted descent from high altitude to accomplish a pinpoint soft landing onto a tiny platform in the middle of a vast ocean.

The ocean-going barge is known as the ‘autonomous spaceport drone ship’ (ASDS). It is being positioned some 200 to 250 miles offshore of the Carolina’s in the Atlantic Ocean along the rockets flight path flying along the US Northeast coast to match that of the ISS.

The ASDS measures only 300 by 100 feet, with wings that extend its width to 170 feet.

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo.  Credit: Ken Kremer – kenkremer.com
A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida. File photo. Credit: Ken Kremer – kenkremer.com

This marks the 2nd attempt by SpaceX to recovery the 14 story tall Falcon 9 first stage booster on the ASDS barge.

The first attempt in January during the CRS-5 mission was largely successful, as I wrote earlier at Universe Today, despite making a ‘hard landing’ on the ASDS. The booster did make it to the drone ship, positioned some 200 miles offshore of the Florida-Carolina coast, northeast of the launch site in the Atlantic Ocean. The rocket broke into pieces upon hitting the barge.

Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.

CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.

Dragon is packed with more than 4,300 pounds (1915 kilograms) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person Expedition 43 and 44 crews serving aboard the ISS.

Dragon cargo vessel ready for mating to SpaceX Falcon 9 rocket for CRS-6 mission launch to the International Space Station (ISS) scheduled for April 13, 2015. Credit: SpaceX
Dragon cargo vessel ready for mating to SpaceX Falcon 9 rocket for CRS-6 mission launch to the International Space Station (ISS) scheduled for April 13, 2015. Credit: SpaceX

The ship will remain berthed at the ISS for about five weeks.

The ISS cannot function without regular deliveries of fresh cargo by station partners from Earth.

Watch for Ken’s continuing onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Dragon cargo vessel being mated to SpaceX Falcon 9 rocket for CRS-6 mission launch to the International Space Station (ISS) scheduled for April 13, 2015. Credit: SpaceX
Dragon cargo vessel being mated to SpaceX Falcon 9 rocket for CRS-6 mission launch to the International Space Station (ISS) scheduled for April 13, 2015. Credit: SpaceX

………….

Learn more about SpaceX, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:

Apr 11-13: “SpaceX, Orion, Commercial crew, Curiosity explores Mars, MMS, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Apr 18/19: “Curiosity explores Mars” and “NASA Human Spaceflight programs” – NEAF (NorthEast Astronomy Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club

CATS Out of The Bag, Crawling Around ISS for Science Down Below

This video frame shows a robotic arm on the space station, called the Japanese Experiment Module Remote Manipulator System, successfully installing NASA's Cloud-Aerosol Transport System (CATS) to the Space Station’s Japanese Experiment Module on Jan. 22, 2015. Credit: NASA

The Japanese robotic arm installs the CATS experiment on an external platform on Japan’s Kibo lab module. The SpaceX Dragon commercial cargo craft is seen at the right center of the image. Credit: NASA TV
See way cool installation video below[/caption]

“Robotic controllers let the CATS out of the bag!” So says NASA spokesman Dan Huot in a cool new NASA timelapse video showing in detail how CATS crawled around the space stations gangly exterior and clawed its way into its new home – topped off with a breathtaking view of our home planet that will deliver science benefits to us down below.

The CATS experiment was installed on the exterior of the International Space Station (ISS) via a first ever type of robotic handoff, whereby one of the stations robotic arms handed the rectangular shaped instrument off to a second robotic arm. Sort of like relays runners passing the baton while racing around the track for the gold medal.

In this case it was all in the name of science. CATS is short for Cloud Aerosol Transport System.

Ground controllers at NASA’s Johnson Space Center in Houston plucked CATS out of the truck of the recently arrived SpaceX Dragon cargo delivery vehicle with the Special Purpose Dexterous Manipulator (Dextre). Then they passed it off to a Japanese team of controllers at JAXA, manipulating the second arm known as the Japanese Experiment Module Remote Manipulator System. The JAXA team then installed CATS onto an external platform on Japans Kibo laboratory.

CATS is a new Earth Science instrument dedicated to collecting continuous data about clouds, volcanic ash plumes and tiny airborne particles that can help improve our understanding of aerosol and cloud interactions and improve the accuracy of climate change models.

The remote-sensing laser instrument measures clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere that directly impacts the global climate.

Data from CATS will be used to derive properties of cloud/aerosol layers at three wavelengths: 355, 532, 1064 nm.

Check out this cool NASA ‘Space to Ground’ video showing CATS installation

Video caption: NASA’s Space to Ground on 1/23/15 covers CATS Out of The Bag. This is your weekly update on what’s happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us.

All the movements were conducted overnight by robotic flight controllers on the ground. They installed CATS to an external platform on Japan’s Kibo lab module.

CATS is helping to open a new era on the space station research dedicated to expanding its use as a science platform for making extremely valuable remote sensing observations for Earth Science.

The CATS instrument is the fourth successful NASA Earth science launch out of five scheduled during a 12-month period. And it is the second to be installed on the exterior of the ISS, following ISS-RapidScat that was brought by the SpaceX CRS-4 Dragon.

The fifth launch — the Soil Moisture Active Passive satellite — is scheduled for Jan. 29 from Vandenberg Air Force Base in California.

CATS was launched to the station as part of the payload aboard the SpaceX Dragon CRS-5 cargo vessel bolted atop the SpaceX Falcon 9 for the spectacular nighttime blastoff on Jan. 10 at 4:47 a.m. EST from Cape Canaveral Air Force Station in Florida.

CATS was loaded in the unpressurized rear trunk section of Dragon.

Kibo Laboratory The new CATS experiment delivered by the SpaceX commercial cargo craft will be installed on a platform outside Japan’s Kibo Laboratory module. Credit: NASA
Kibo Laboratory
The new CATS experiment delivered by the SpaceX commercial cargo craft will be installed on a platform outside Japan’s Kibo Laboratory module. Credit: NASA

The Dragon CRS-5 spacecraft was loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, the CATS science payload, student research investigations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person crew serving aboard the ISS.

It successfully rendezvoused at the station on Jan. 12 after a two day orbital chase, delivering the critical cargo required to keep the station stocked and humming with science.

Artist concept of CATS on ISS. Credit: NASA
Artist concept of CATS on ISS. Credit: NASA

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Elon Musk Releases Dramatic Imagery of Mostly Successful Falcon 9 1st Recovery Attempt, Hard Landing on Drone Ship

Rocket hits hard at ~45 deg angle, smashing legs and engine section. Credit: SpaceX/Elon Musk

Rocket hits hard at ~45 deg angle, smashing legs and engine section. Credit: SpaceX/Elon Musk
See video below[/caption]

Dramatic new photos and video of the daring and mostly successful attempt by Space X to land their Falcon 9 booster on an ocean-going “drone ship” were released this morning, Friday, Jan. 16, by SpaceX CEO and founder Elon Musk.

Musk posted the imagery online via his twitter account and they vividly show just how close his team came to achieving total success in history’s first attempt to land and recover a rocket on a tiny platform in the ocean.

Here’s the video: “Close, but no cigar. This time.”

The rocket landing and recovery attempt was a secondary objective of SpaceX, that immediately followed the spectacular nighttime blastoff of the Falcon 9 on Jan. 10 carrying the SpaceX Dragon cargo freighter spacecraft on a critical resupply mission for NASA bound for the space station.

The history making attempt at recovering the Falcon 9 first stage was a first of its kind experiment to accomplish a pinpoint soft landing of a rocket onto a miniscule platform at sea using a rocket assisted descent by the first stage Merlin engines aided by steering fins.

The first stage rocket reached an altitude of over 100 miles after firing nine Merlins as planned for nearly three minutes. It had to be slowed from traveling at a velocity of about 2,900 mph (1300 m/s). The descent maneuver has been likened to someone balancing a rubber broomstick on their hand in the middle of a fierce wind storm.

The imagery shows the last moments of the descent as the rocket hits the edge of the drone ship at a 45 degree angle with its four landing legs extended and Merlin 1D engines firing.

Before impact, fins lose power and go hardover. Engines fights to restore, but … Credit: SpaceX/Elon Musk
Before impact, fins lose power and go hardover. Engines fights to restore, but … Credit: SpaceX/Elon Musk

Musk tweeted that the first stage Falcon 9 booster ran out of hydraulic fluid and thus hit the barge.

“Rocket hits hard at ~45 deg angle, smashing legs and engine section,” Musk explained today.

Lacking hydraulic fluid the boosters attached steering fins lost power just before impact.

“Before impact, fins lose power and go hardover. Engines fights to restore, but …,” Musk added.

Residual fuel and oxygen combine.  Credit: SpaceX/Elon MuskSpaceX/Elon Musk
Residual fuel and oxygen combine. Credit: SpaceX/Elon MuskSpaceX/Elon Musk

This ultimately caused the Falcon 9 to crash land as the legs and engine section were smashed and destroyed as the fuel and booster burst into flames. The ship survived no problem.

“Residual fuel and oxygen combine.”

“Full RUD (rapid unscheduled disassembly) event. Ship is fine minor repairs. Exciting day!” said Musk.

“Rocket made it to drone spaceport ship, but landed hard. Close, but no cigar this time. Bodes well for the future tho,” Musk tweeted within hours after the launch and recovery attempt.

As I wrote on launch day here at Universe Today, despite making a ‘hard landing’ on the vessel dubbed the ‘autonomous spaceport drone ship,’ the 14 story tall Falcon 9 first stage did make it to the drone ship, positioned some 200 miles offshore of the Florida-Carolina coast, northeast of the launch site in the Atlantic Ocean. The rocket broke into pieces upon hitting the barge.

Whereas virtually every other news outlet quickly declared the landing attempt a “Failure” in the headline, my assessment as a scientist and journalist was the complete opposite!!

In my opinion the experiment was “a very good first step towards the bold company goal of recovery and re-usability in the future” as I wrote in my post launch report here at Universe Today.

Listen to my live radio interview with BBC 5LIVE conducted Saturday night (Jan. 11 UK time), discussing SpaceX’s first attempt to land and return their Falcon-9 booster.

“Is it safe? Was SpaceX brave or foolhardy? Why is this significant? Will SpaceX succeed in the future?” the BBC host asked me.

I replied; “It was a 99% success” and more …..

“Am super proud of my crew for making huge strides towards reusability on this mission. You guys rock!” Musk declared in a later tweet.

SpaceX achieved virtually all of their objectives in the daunting feat except for a soft landing on the drone ship.

This was a bold experiment involving re-lighting one of the first stage Merlin 1D engines three times to act as a retro rocket to slow the stages descent and aim for the drone ship.

Four attached hypersonic grid fins and a trio of Merlin propulsive burns succeeded in slowing the booster from hypersonic velocity to subsonic and guiding it to the ship.

The drone ship measures only 300 feet by 170 feet. That’s tiny compared to the Atlantic Ocean.

The first stage was planned to make the soft landing by extending four landing legs to a width of about 70 feet to achieve an upright landing on the platform with a accuracy of 30 feet (10 meters).

No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land. And several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.

So they will learn and move forward to the next experimental landing, that could come as early as a few weeks on the launch of the DSCOVR mission in late January or early February.

“Upcoming flight already has 50% more hydraulic fluid, so should have plenty of margin for landing attempt next month.”

Full RUD (rapid unscheduled disassembly) event. Ship is fine minor repairs. Exciting day! Credit: SpaceX/Elon Musk
Full RUD (rapid unscheduled disassembly) event. Ship is fine minor repairs. Exciting day! Credit: SpaceX/Elon Musk

Musk’s daring vision is to recover, refurbish and reuse the first stage and dramatically reduce the high cost of access to space, by introducing airline like operational concepts.

It remains to be seen whether his vision of reusing rockets can be made economical. Most of the space shuttle systems were reused, except for the huge external fuel tanks, but it was not a cheap proposition.

But we must try to cut rocket launch costs if we hope to achieve routine and affordable access to the high frontier and expand humanity’s reach to the stars.

The Falcon 9 launch itself was a flawless success, blasting off at 4:47 a.m. EST on Jan. 10 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The Dragon CRS-5 spacecraft was loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, the CATS science payload, student research investigations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person crew serving aboard the ISS.

It successfully rendezvoused at the station on Jan. 12 after a two day orbital chase, delivering the critical cargo required to keep the station stocked and humming with science.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

SpaceX Dragon Captured at Station Loaded with Critical Supplies and Science

The Canadarm2 has the SpaceX Dragon in its grips on Jan 12, 2015. Credit: NASA TV

The commercial SpaceX cargo Dragon, loaded with over 2.6 tons of critically needed supplies and science experiments, was captured by the crew aboard the International Space Station (ISS) this morning (Jan. 12) while soaring over the Mediterranean Sea.

The SpaceX Dragon CRS-5 cargo vessel arrived at the station following a flawless two day orbital pursuit and spectacular nighttime blastoff atop the SpaceX Falcon 9 on Jan. 10 at 4:47 a.m. EST from Cape Canaveral Air Force Station in Florida.

Note: This breaking news story is being updated. Check back frequently for updates.

Dragon was successfully berthed and bolted into place a few hours later at 8:54 a.m. EST.

Working at the robotics work station inside the seven windowed domed cupola, Expedition 42 Commander Barry “Butch” Wilmore of NASA, with the assistance of Flight Engineer Samantha Cristoforetti of the European Space Agency, successfully captured the Dragon spacecraft with the station’s Canadian-built robotic arm at 5:54 a.m. EST.

Wilmore grappled Dragon with the station’s 57-foot-long (17-meter-long) robotic arm at 5:54 a.m. EST, about 18 minutes ahead of schedule, in an operation shown live on NASA TV, back-dropped by breathtaking views of “our beautiful Earth” passing by some 260 miles (410 kilometers) below.

Among the goodies aboard are belated Christmas presents for the crew. The Falcon 9 and Dragon were originally scheduled to liftoff in December and arrive in time for the Christmas festivities.

The cargo freighter flew beneath the station to arrive at the capture point 32 feet (10 meters) away. Dragon’s thrusters were disabled at the time of grappling.

Robotics officers at Houston Mission Control then began remotely maneuvering the arm to berth Dragon at the Earth-facing port on the station’s Harmony module starting at 7:45 a.m. EST.

Dragon is being attached via the common berthing mechanism (CBM) using four gangs of four bolts apiece to accomplish a hard mate to Harmony. The overall grappling and berthing process requires a few hours.

Dragon was successfully berthed and bolted into place at 8:54 a.m. EST and its now part of the space station.

The crew will conduct leak pressure checks, remove the docking mechanism and open the hatch later today or tomorrow.

#Dragon is about 90 feet from #ISS, closing in on its capture point.  Credit: NASA TV
#Dragon is about 90 feet from #ISS, closing in on its capture point. Credit: NASA TV

CRS-5 marks the company’s fifth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

Overall this is the sixth Dragon to arrive at the ISS.

The ISS cannot function without regular deliveries of fresh cargo by station partners from Earth.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere that directly impact the global climate.

CATS is loaded aboard the unpressurized trunk of Dragon.

Also loaded onboard are 17 student experiments known collectively as the “Yankee Clipper” mission. The experiments are sponsored by the National Center for Earth and Space Science Education, which oversees the Student Spaceflight Experiments Program (SSEP) in partnership with NanoRacks LLC.

The launch marked the first US commercial resupply launch since the catastrophic destruction of an Orbital Sciences Antares rocket and Cygnus Orb-3 spacecraft bound for the ISS which exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed, hopefully by late 2015, on an alternate rocket, the Atlas V.

SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, carrying the Dragon resupply spacecraft to the International Space Station.   Credit: John Studwell/AmericaSpace
SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL, carrying the Dragon resupply spacecraft to the International Space Station. Credit: John Studwell/AmericaSpace

Dragon will remain attached to the ISS for about four weeks until Feb. 10.

SpaceX also had a secondary objective of recovering the Falcon 9 booster’s first stage via an unprecedented precision guided landing on an ocean-going “drone.”

The history making attempt at recovering the Falcon 9 first stage was a first of its kind experiment to accomplish a pinpoint soft landing of a rocket onto a tiny platform in the middle of a vast ocean using a rocket assisted descent.

In my opinion the experiment was “a very good first step towards the bold company goal of recovery and re-usability in the future” as I wrote in my post launch report here at Universe Today.

Listen to my live radio interview with BBC 5LIVE conducted Saturday night, discussing SpaceX’s first attempt to land and return their Falcon-9 booster.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The SpaceX Dragon is attached to the Harmony module. Credit: NASA TV
The SpaceX Dragon is attached to the Harmony module. Credit: NASA TV

SpaceX Successfully Launches Cargo Ship to Station and Hard Lands Rocket on “Drone Ship”

The SpaceX Falcon 9 rocket is thundering away from Cape Canaveral Air Force Station on its way to a Monday-morning rendezvous with the International Space Station. The booster’s nine Merlin engines are generating 1.3 million pounds of thrust as the vehicle begins its climb to orbit. Credit: NASA

SpaceX successfully launched their commercial Falcon 9 rocket and Dragon cargo ship on a critical mission for NASA bound for the space station this morning, Jan. 10, while simultaneously accomplishing a hard landing of the boosters first stage on an ocean-floating “drone ship” platform in a very good first step towards the bold company goal of recovery and re-usability in the future.

The spectacular night time launch of the private SpaceX Falcon 9 rocket lit up the skies all around the Florida Space Coast and beyond following a flawless on time liftoff at 4:47 a.m. EST from Cape Canaveral Air Force Station.

The nine Merlin 1D engines of the 208 foot-tall Falcon 9 generated 1.3 million pounds of liftoff thrust as the rocket climbed to orbit on the first SpaceX launch of 2015.

The Dragon CRS-5 mission is on its way to a Monday-morning rendezvous with the International Space Station (ISS).

It is loaded with more than two tons of supplies and NASA science investigations for the six person crew aboard the massive orbiting outpost.

A secondary goal of SpaceX was to conduct a history-making attempt at recovering the 14 story tall Falcon 9 first stage via a precision landing on an ocean-going landing platform known as the “autonomous spaceport drone ship.”

SpaceX CEO Elon Musk quickly tweeted that good progress was made, and as expected, more work needs to be done.

This was an experiment involving re-lighting one of the first stage Merlin engines three times to act as a retro rocket to slow the stages descent and aim for the drone ship.

“Rocket made it to drone spaceport ship, but landed hard. Close, but no cigar this time. Bodes well for the future tho,” Musk tweeted soon after the launch and recovery attempt.

“Ship itself is fine. Some of the support equipment on the deck will need to be replaced…”

“Didn’t get good landing/impact video. Pitch dark and foggy. Will piece it together from telemetry and … actual pieces.”

Musk’s daring vision is to recover, refurbish and reuse the first stage and dramatically reduce the high cost of access to space, by introducing airline like operational concepts.

The ‘autonomous spaceport drone ship’ was positioned some 200 to 250 miles offshore of the launch site in the Atlantic Ocean along the rockets flight path, flying along the US Northeast coast to match that of the ISS.

The autonomous spaceport drone ship measure only 300 by 100 feet, with wings that extend its width to 170 feet. That’s tiny compared to the Atlantic Ocean.

Therefore the SpaceX team was successful in accomplishing a rocket assisted descent and pinpoint landing in the middle of a vast ocean, albeit not as slow as hoped.

No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land. And several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.

So they will learn and move forward to the next experimental landing.

SpaceX rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station carrying the Dragon resupply spacecraft to the International Space Station.   Credit: NASA/Jim Grossmann
SpaceX rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station carrying the Dragon resupply spacecraft to the International Space Station. Credit: NASA/Jim Grossmann

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

“We are delighted to kick off 2015 with our first commercial cargo launch of the year,” said NASA Administrator Charles Bolden in a statement.

“Thanks to our private sector partners, we’ve returned space station resupply launches to U.S. soil and are poised to do the same with the transport of our astronauts in the very near future.”

“Today’s launch not only resupplies the station, but also delivers important science experiments and increases the station’s unique capabilities as a platform for Earth science with delivery of the Cloud-Aerosol Transport System, or CATS instrument. I congratulate the SpaceX and NASA teams who have made today’s success possible. We look forward to extending our efforts in commercial space to include commercial crew by 2017 and to more significant milestones this year on our journey to Mars.”

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

The launch marked the first US commercial resupply launch since the catastrophic destruction of an Orbital Sciences Antares rocket and Cygnus Orb-3 spacecraft bound for the ISS exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed hopefully by late 2015 on an alternate rocket, the Atlas V.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Launch and Historic Landing Attempt Reset to Jan. 10

Bearing the CRS-5 Dragon cargo craft within its nose, the Falcon 9 v1.1 stands patiently to execute the United States’ first mission of 2015. Photo Credit: Mike Killian/AmericaSpace

The oft delayed launch of the SpaceX Falcon 9 rocket on the CRS-5 cargo resupply mission for NASA to the International Space Station (ISS) has been reset to Saturday, Jan. 10.

Liftoff is currently targeted for 4:47 a.m. EST Saturday, Jan. 10, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida following a postponement from Friday, Jan. 9.

The launch was unexpectedly scrubbed with one minute, 21 seconds left on the countdown clock for technical reasons earlier this week just prior to the targeted blastoff time of 6:20 a.m. EST on Tuesday, Jan. 6.

A thrust vector control actuator for the Falcon 9’s second stage failed to perform as expected, resulting in a launch abort, said NASA.

NASA and SpaceX decided to take another day to fully evaluate the issue and ensure a launch success.

The launch will be the first Falcon 9 liftoff for 2015.

The overnight launch should put on a spectacular sky show for spectators along the Florida space coast.

There is only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force a scrub until at least Tuesday, Jan. 13.

SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing.  Credit: Elon Musk/SpaceX
SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing. Credit: Elon Musk/SpaceX

Overall, CRS-5 is the company’s fifth commercial resupply services mission to the International Space Station.

In additional to being a critical cargo mission required to keep the space station stocked with provisions for the crew and research experiments, the mission features a history making attempt to recover the first stage of the Falcon 9 rocket.

The rocket recovery and landing attempt is a key step towards carrying out SpaceX CEO Elon Musk’s bold vision of rocket reusability.

Towards that end, SpaceX dispatched the “autonomous spaceport drone ship” sailing at sea towards a point where Musk hopes it will serve as an ocean going landing platform for the precision landing of his firm’s Falcon 9 rocket after it concludes its launch phase to the ISS.

Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5.   Credit: SpaceX/Elon Musk
Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5. Credit: SpaceX/Elon Musk

The “autonomous spaceport drone ship” departed the port of Jacksonville, FL, on Saturday, Jan. 3, heading to a point somewhere around 200 to 250 miles or so off the US East coast in a northeasterly direction coinciding with the flight path of the rocket.

However, the absolute overriding goal of the mission is to safely deliver NASA’s contracted cargo to the ISS, emphasized Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing on Jan. 5 at the Kennedy Space Center.

Landing on the off-shore barge is just a secondary objective of SpaceX, not NASA, he repeated several times.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Student Space Flight teams at NASA Wallops - Will Refly on SpaceX CRS 5.   Science experiments from these students representing 18 school communities across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded uexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares launch. The experiments will be re-flown aboard SpaceX CRS-5.  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops – Experiments Will Refly on SpaceX CRS 5. Science experiments from these students, representing 18 school communities across America, were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP). The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares’ launch. The experiments will be re-flown aboard SpaceX CRS-5. Credit: Ken Kremer – kenkremer.com

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.

Also loaded onboard are 17 student experiments known collectively as the “Yankee Clipper” mission. The experiments are sponsored by the National Center for Earth and Space Science Education which oversees the Student Spaceflight Experiments Program (SSEP) in partnership with NanoRacks LLC.

They had been selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS, but were all lost when the rocket exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The experiments have been reconstituted to fly on the CRS-5 mission.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed hopefully by late 2015 on an alternate rocket, the Atlas V.

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

The weather forecast stands at 80% GO for favorable conditions at launch time.

NASA Television live launch coverage begins at 3:30 a.m. EST on Jan. 10 at: http://www.nasa.gov/multimedia/nasatv/

SpaceX also will webcast the launch at: http://www.spacex.com/webcast/

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

Drone Ship at Sea Preparing for Bold SpaceX Rocket Recovery Landing Attempt

SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing. Credit: Elon Musk/SpaceX

Aiming to one day radically change the future of the rocket business, SpaceX CEO Elon Musk has a bold vision unlike any other in a historic attempt to recover and reuse rockets set for Jan. 6 with the goal of dramatically reducing the enormous costs of launching anything into space.

Towards the bold vision of rocket reusability, SpaceX dispatched the “autonomous spaceport drone ship” sailing at sea towards a point where Musk hopes it will serve as an ocean going landing platform for the first stage of his firm’s Falcon 9 rocket after it concludes its launch phase to the International Space Station (ISS).

“Drone spaceport ship heads to its hold position in the Atlantic to prepare for a rocket landing,” tweeted Musk today (Jan. 5) along with a photo of the drone ship underway (see above).

The history making and daring experimental landing is planned to take place in connection with the Tuesday, Jan. 6, liftoff of the Falcon 9 booster and Dragon cargo freighter bound for the ISS on a critical resupply mission for NASA.

No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land. And several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.

The “autonomous spaceport drone ship” departed the port of Jacksonville, FL, on Saturday, heading to a point somewhere around 200 to 250 miles or so off the US East coast in a northeasterly direction coinciding with the flight path of the rocket.

SpaceX Falcon 9 first stage rocket will attempt precison landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014 from Cape Canaveral, Florida.  Credit: SpaceX
SpaceX Falcon 9 first stage rocket will attempt precision landing on this autonomous spaceport drone ship soon after launch set for January 6, 2015, from Cape Canaveral, Florida. Credit: SpaceX

The SpaceX Dragon CRS-5 mission is slated to blast off at 6:20 am EST, Tuesday, Jan. 6, 2015, atop the SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Falcon 9 and Dragon have gone vertical in advance of the 6:20am ET launch on Jan. 6, 2015. Credit: SpaceX.
Falcon 9 and Dragon have gone vertical in advance of the 6:20 am ET launch on Jan. 6, 2015. Credit: SpaceX.

The absolute overriding goal of the mission is to safely deliver NASA’s contracted payload to the ISS, emphasized Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing today (Jan. 5) at the Kennedy Space Center. Landing on the off shore barge is just a secondary objective of SpaceX, not NASA, he repeated several times.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Koenigsmann estimated the odds of success at the landing attempt at about 50% at best according to an estimate from Musk himself.

“It’s an experiment. There’s a certain likelihood that this will not work out right, that something will go wrong.”

The two stage Falcon 9 and Dragon stands 207.8 feet (63.3 meters) tall and is 12 feet in diameter. The first stage is powered by nine Merlin 1D engines that generate 1.3 million pounds of thrust at sea level and rises to 1.5 million pounds of thrust as the Falcon 9 climbs out of the atmosphere, according to a SpaceX fact sheet.

The first stage Merlins will fire for three minutes until the planned engine shutdown and main engine cutoff known as MECO, said Koenigsmann.

The rocket will be in space at an altitude of over 100 miles zooming upwards at 1300 m/s (nearly 1 mi/s).

Then, a single Merlin 1D will be commanded to re-fire for three separate times to stabilize and lower the rocket during the barge landing attempt.

Four hypersonic grid fins had been added to the first stage and placed in an X-wing configuration. They will be deployed only during the reentry attempt and will be used to roll, pitch, and yaw the rocket in concert with gamboling of the engines.

It will take about nine minutes from launch until the first stage reaches the barge, said Koenigsmann. That’s about the same time it takes for Dragon to reach orbit.

He added that, depending on the internet connectivity, SpaceX may or may not know the outcome in real time.

Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5.   Credit: SpaceX/Elon Musk
Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5. Credit: SpaceX/Elon Musk

Here’s a description from SpaceX:

“To help stabilize the stage and to reduce its speed, SpaceX relights the engines for a series of three burns. The first burn—the boostback burn—adjusts the impact point of the vehicle and is followed by the supersonic retro propulsion burn that, along with the drag of the atmosphere, slows the vehicle’s speed from 1300 m/s to about 250 m/s. The final burn is the landing burn, during which the legs deploy and the vehicle’s speed is further.”

“To complicate matters further, the landing site is limited in size and not entirely stationary. The autonomous spaceport drone ship is 300 by 100 feet, with wings that extend its width to 170 feet. While that may sound huge at first, to a Falcon 9 first stage coming from space, it seems very small. The legspan of the Falcon 9 first stage is about 70 feet and while the ship is equipped with powerful thrusters to help it stay in place, it is not actually anchored, so finding the bullseye becomes particularly tricky. During previous attempts, we could only expect a landing accuracy of within 10km. For this attempt, we’re targeting a landing accuracy of within 10 meters.”

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO, Elon Musk, briefs reporters, including Universe Today, in Cocoa Beach, FL, prior to a previous SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

The cargo delivery is the entire point of the CRS-5 mission.

The official CRS-5 Mission Patch
The official CRS-5 Mission Patch

The weather odds have improved to 70% GO from 60% GO reported Major Perry Sweat, 45th Weather Squadron rep, USAF, at the briefing today at the Kennedy Space Center.

Following the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter on Oct. 28 from NASA’s Wallops Flight Facility in Virginia, Antares launches are on hold.

Therefore the US supply train to the ISS is now wholly dependent on SpaceX.

NASA Television live launch coverage begins at 5 a.m. EST on Jan. 6 at: http://www.nasa.gov/multimedia/nasatv/

SpaceX also will webcast the launch at: http://www.spacex.com/webcast/

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo.  Credit: Ken Kremer – kenkremer.com
A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo. Credit: Ken Kremer – kenkremer.com

SpaceX and NASA On Track For Spectacular Predawn Jan. 6 Launch of Critical Cargo Mission to ISS

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo. Credit: Ken Kremer – kenkremer.com

SpaceX is on track to rollout their Falcon 9 rocket carrying the Dragon cargo freighter this evening, Monday, Jan, 5, 2015 to launch pad 40 on a mission bound for the International Space Station (ISS) to deliver critical supplies.

The Dragon CRS-5 mission is slated to blast off at 6:20 a.m. EST, Tuesday, Jan. 6, 2015, atop the SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The predawn launch should put on a spectacular sky show for spectators along the Florida space coast.

There is only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force a scrub until at least Friday, Jan. 9.

SpaceX Falcon 9 ready for rollout to launch pad for Dragon CRS-5 mission.  Credit: SpaceX
SpaceX Falcon 9 ready for rollout to launch pad for Dragon CRS-5 mission. Credit: SpaceX

The launch has already been postponed several times, most recently from Dec. 19, 2014 when a static fire test of the first stage engines on Dec. 17 shut down prematurely.

A second static fire test of the SpaceX Falcon 9 successfully went the full duration of approximately 3 seconds and cleared the path for a liftoff attempt after the Christmas holidays.

The delay allowed the teams to recoup and recover and enjoy the festive holiday season.

“It was a good decision to postpone the launch until after the holidays,” said Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing today at the Kennedy Space Center (KSC).

Following the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter on Oct. 28 from NASA’s Wallops Flight Facility in Virginia, officials have been prudently cautious to ensure that all measures were carefully rechecked to maximize the possibilities of a launch success.

SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit:  SpaceX
SpaceX Falcon 9 rocket completes successful static fire test on Dec. 19 ahead od planned CRS-5 mission for NASA in early January 2015. Credit: SpaceX

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract

The weather odds have improved to 70% GO from 60% GO reported Major Perry Sweat, 45th Weather Squadron rep, USAF, at the briefing today at the Kennedy Space Center.

A frontal boundary has settled in over Central Florida. This front and its associated cloudiness will be very slow to move south of the Space Coast. With the clouds only slowly eroding overhead, the primary weather concern remains thick clouds, according to Sweat.

The unmanned cargo freighter is loaded with more than 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the space station.

The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.

Commander Barry “Butch” Wilmore on the International Space Station shared this beautiful image of #sunrise earlier today, 1/3/15.  Credit: NASA/Barry ‘Butch’ Wilmore
Commander Barry “Butch” Wilmore on the International Space Station shared this beautiful image of #sunrise earlier today, 1/3/15. Credit: NASA/Barry ‘Butch’ Wilmore

Assuming all goes well, Dragon will rendezvous at the ISS on Thursday, Jan. 8, for grappling and berthing by the ISS astronauts maneuvering the 57 foot-long (17 meter-long) Canadian built robotic arm.

The SpaceX CRS-5 launch is the first cargo launch to the ISS since the doomed Orbital Sciences Antares/Cygnus launch ended in catastrophe on Oct. 28.

With Antares launches on indefinite hold, the US supply train to the ISS is now wholly dependent on SpaceX.

Orbital Sciences has now contracted United Launch Alliance
(ULA) to launch the firms Cygnus cargo freighter to the ISS by late 2015 on an Atlas V rocket.

A secondary objective of SpaceX is to attempt to recover the Falcon 9 first stage on an off shore barge.

NASA Television live launch coverage begins at 5 a.m. EST on Jan. 6.

 SpaceX Falcon 9 rocket is set to soar to ISS after completing  successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com
SpaceX Falcon 9 rocket is set to soar to ISS after completing successful static fire test on Dec. 19 ahead of replanned CRS-5 mission for NASA launching on Jan. 6, 2015. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

Good Morning, Space Station … A Dragon Soars Soon!

Commander Barry “Butch” Wilmore on the International Space Station shared this beautiful image of #sunrise earlier today, 1/3/15. Credit: NASA/Barry ‘Butch’ Wilmore

Good Morning, Space Station!

It’s sunrise from space – one of 16 that occur daily as the massive lab complex orbits the Earth about every 90 minutes while traveling swiftly at about 17,500 mph and an altitude of about 250 miles (400 kilometers).

Just stare in amazement at this gorgeous sunrise view of “Our Beautiful Earth” taken earlier today, Jan. 3, 2015, aboard the International Space Station (ISS) by crewmate and NASA astronaut Barry “Butch” Wilmore.

And smack dab in the middle is the Canadian-built robotic arm that will soon snatch a soaring Dragon!

Wilmore is the commander of the ISS Expedition 42 crew of six astronauts and cosmonauts hailing from three nations: America, Russia and Italy.

He is accompanied by astronauts Terry Virts from NASA and Samantha Cristoforetti from the European Space Agency (ESA) as well as by cosmonauts Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov from Russia.

All told the crew of four men and two women see 16 sunrises and 16 sunsets each day. During the daylight periods, temperatures reach 200 ºC, while temperatures plunge drastically during the night periods to -200 ºC.

Here’s another beautiful ISS sunset view captured on Christmas by Terry Virts:

Astronaut Terry Virts on the International Space Station shared this beautiful sunrise image on Twitter saying "Sunrise on Christmas morning - better than any present I could ask for!!!!"  Credit: NASA/Terry Virts
Astronaut Terry Virts on the International Space Station shared this beautiful sunrise image on Twitter saying “Sunrise on Christmas morning – better than any present I could ask for!!!!” Credit: NASA/Terry Virts

Virts tweeted the picture and wrote: “Sunrise on Christmas morning – better than any present I could ask for!!!!”

Another treasure from Virts shows the many splendid glorious colors of Earth seen from space but not from the ground:

“In space you see intense colors, shades of blue that I’d never seen before,” says NASA astronaut Terry Virts. Credit: NASA/@astro_terry
Sunset Over the Gulf of Mexico
“In space you see intense colors, shades of blue that I’d never seen before,” says NASA astronaut Terry Virts. Credit: NASA/@astro_terry

“In space you see intense colors, shades of blue that I’d never seen before,” says Virts from his social media accounts (http://instagram.com/astro_terry/) (http://instagram.com/iss).

“It’s been said a thousand times but it’s true: There are no borders that you can see from space, just one beautiful planet,” he says. “If everyone saw the Earth through that lens I think it would be a much better place.”

And many of the crews best images are taken from or of the 7 windowed Cupola.

Here’s an ultra cool shot of Butch waving Hi!

“Hi from the cupola!” #AstroButch.  Credit: NASA/ISS
“Hi from the cupola!” #AstroButch. Credit: NASA/ISS

And they all eagerly await the launch and arrival of a Dragon! Indeed it’s the SpaceX cargo Dragon currently slated for liftoff in three days on Tuesday, Jan. 6.

Weather odds are currently 60% favorable for launch of the unmanned space station resupply ship on the SpaceX CRS-5 mission.

The launch was postponed from Dec. 19 when a static fire test of the first stage engines on Dec. 17 shut down prematurely.

A second static fire test of the SpaceX Falcon 9 went the full duration of approximately 3 seconds and cleared the path for a liftoff attempt after the Christmas holidays.

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

CRS-5 is slated to blast off at 6:20 a.m. EST Tuesday, Jan. 6, 2015, atop a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida.

NASA Television live launch coverage begins at 5 a.m. EST.

Assuming all goes well, Dragon will rendezvous at the ISS on Thursday, Jan. 8, for grappling and berthing by the astronauts maneuvering the 57 foot-long (22 m) Canadian built robotic arm.

Remember that you can always try and catch of glimpse of the ISS flying overhead by checking NASA’s Spot the Station website with a complete list of locations.

It’s easy to plug in and determine visibilities in your area worldwide.

And don’t forget to catch up on the Christmas holiday and New Year’s 2015 imagery and festivities from the station crews in my recent stories – here, here and here.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Happy New Year! Celebrating from space with @AstroTerry.  Credit: NASA/Terry Virts
Happy New Year! Celebrating from space with @AstroTerry. Credit: NASA/Terry Virts
ISS Expedition 42. Credit: NASA/ESA/Roscosmos
ISS Expedition 42. Credit: NASA/ESA/Roscosmos

Our Beautiful Earth – Happy New Year Photos and Greetings from the ISS Crew

Spectacular View of the Alps From Space! Expedition 42 Flight Engineer Samantha Cristoforetti of the European Space Agency (ESA) took this photograph of the Alps from the International Space Station. She wrote, "I'm biased, but aren't the Alps from space spectacular? What a foggy day on the Po plane, though! #Italy" Credit: NASA/ESA/Samantha Cristoforetti

Spectacular View of the Alps From Space!
Expedition 42 Flight Engineer Samantha Cristoforetti of the European Space Agency (ESA) took this photograph of the Alps from the International Space Station. She wrote, “I’m biased, but aren’t the Alps from space spectacular? What a foggy day on the Po plane, though! #Italy” Credit: NASA/ESA/Samantha Cristoforetti
Updated with more images[/caption]

As we say goodbye to 2014 and ring in New Year 2015, the Expedition 42 crew living and working aboard the International Space Station enjoys the new gallery of images they’ve sent back of “Our Beautiful Earth.”

The current six person crew includes astronauts and cosmonauts from three nations – America, Russia, and Italy – and the four men and two women are celebrating New Year’s 2015 aboard the massive orbiting lab complex.

Happy New Year! Celebrating from space with @AstroTerry.  Credit: NASA/Terry Virts
Happy New Year! Celebrating from space with @AstroTerry. Credit: NASA/Terry Virts

They comprise Expedition 42 Commander Barry “Butch” Wilmore and Terry Virts from NASA, Samantha Cristoforetti from the European Space Agency (ESA), and cosmonauts Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov from Russia.

Beauty everywhere! Flying from the Mediterranean to the Caspian Sea, this appeared through the clouds.#HelloEarth.  Credit: NASA/ESA/Samantha Cristoforetti
Beauty everywhere! Flying from the Mediterranean to the Caspian Sea, this appeared through the clouds.#HelloEarth. Credit: NASA/ESA/Samantha Cristoforetti

The ISS has been continuously occupied by humans for 15 years. And they are joined by Robonaut 2 who recently got legs.

This area saw some serious action about 350 million years ago! Gweni-Fada meteorite crater in #Chad. Credit: NASA/ESA/Samantha Cristoforetti
This area saw some serious action about 350 million years ago! Gweni-Fada meteorite crater in #Chad. Credit: NASA/ESA/Samantha Cristoforetti

Terry Virts and Samantha Cristoforetti have been especially prolific in picture taking and posting to social media for us all to enjoy the view while speeding merrily along at 17,500 mph from an altitude of about 250 miles (400 kilometers) above Earth.

Here’s a special New Year video greeting from Wilmore and Virts:

Video Caption: Happy New Year from the International Space Station from NASA astronauts Barry “Butch” Wilmore and Terry Virts. Credit: NASA

“Happy New Year from the International Space Station!” said Wilmore.

“We figure that we will be over midnight somewhere on the Earth on New Year’s for 16 times throughout this day. So we plan to celebrate New Year’s 16 times with our comrades and our people down on Earth.”

No sunsets until Jan 4th- we are in a "high beta" orbit now, so this is as dark as it gets.  Credit: NASA/Terry Virts
No sunsets until Jan 4th- we are in a “high beta” orbit now, so this is as dark as it gets. Credit: NASA/Terry Virts

“We wish everybody a happy, healthy, and prosperous 2015 as we get the awesome privilege of celebrating New Year’s here on the space station with our six station crewmates,” added Virts!

“We’ll enjoy our 16 New Year’s celebrations here.”

Part of the #Aral sea peaking through the clouds as we flew into #Kazakhstan! #HelloEarth.  Credit: NASA/ESA/Samantha Cristoforetti
Part of the #Aral sea peaking through the clouds as we flew into #Kazakhstan! #HelloEarth. Credit: NASA/ESA/Samantha Cristoforetti

They plan to celebrate the dawn of 2015 with fruit juice toasts, NASA reports.

The year 2015 starts officially for the station crew at midnight by the Universal Time Clock (UTC), also known as Greenwich Mean Time (GMT), in London, or at 7 p.m. EST Dec. 31.

If I couldn't be in space right now I'd want to be here- #Hawaii.  Credit: NASA/Terry Virts
If I couldn’t be in space right now I’d want to be here- #Hawaii. Credit: NASA/Terry Virts

New Year’s Day 2015 is a day off for the crew.

And I’m certain they’ll be gazing out the windows capturing more views of “Our Beautiful Earth!”

42 è la risposta! // 42 is the answer! #Expedition42 Guide to the galaxy. Credit: @NASA_Astronauts #AstroButch
42 è la risposta! // 42 is the answer! #Expedition42 Guide to the galaxy. Credit: @NASA_Astronauts #AstroButch

And don’t forget to catch up on the Christmas holiday imagery and festivities from the station crews in my recent stories – here and here.

#NewYork NewYork! Can almost see the Statue of Liberty. Which is, by the way, #UNESCO#WorldHeritage! Credit: NASA/ESA/Samantha Cristoforetti
#NewYork NewYork! Can almost see the Statue of Liberty. Which is, by the way, #UNESCO#WorldHeritage! Credit: NASA/ESA/Samantha Cristoforetti

Be sure to remember that you can always try and catch of glimpse of the ISS flying overhead by checking NASA’s Spot the Station website with a complete list of locations.

It’s easy to plug in and determine visibilities in your area worldwide. And try to shoot a time-lapse view like mine below.

ISS streaks over Princeton, NJ - time lapse image.  Credit: Ken Kremer
ISS streaks over Princeton, NJ – time lapse image. Credit: Ken Kremer

Meanwhile the crew continues science operations and preparations for next week’s arrival of the next unmanned space station resupply ship on the SpaceX CRS-5 mission.

CRS-5 is slated to blast off atop a SpaceX Falcon 9 rocket on Jan. 6 from Cape Canaveral Air Force Station in Florida.

 SpaceX Falcon 9 rocket is set to soar to ISS after completing  successful static fire test on Dec. 19 ahead of planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com
SpaceX Falcon 9 rocket is set to soar to the ISS after completing a successful static fire test on Dec. 19 ahead of the planned CRS-5 mission for NASA in early January 2015. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

ISS astronauts Barry “Butch” Wilmore, NASA, Samantha Cristoforetti, ESA and Terry Virts, NASA send Christmas 2014 greetings from the space station to the people of Earth.  Credit: NASA/ESA
ISS astronauts Barry “Butch” Wilmore, NASA, Samantha Cristoforetti, ESA, and Terry Virts, NASA, send Christmas 2014 greetings from the space station to the people of Earth. Credit: NASA/ESA
ISS Expedition 42. Credit: NASA/ESA/Roscosmos
ISS Expedition 42. Credit: NASA/ESA/Roscosmos