In a significant move towards further expansion of the International Space Station’s (ISS) burgeoning research and commercial space economy capabilities, NASA has approved the development of the first privately developed airlock and is targeting blastoff to the orbiting lab complex in two years.
Plans call for the commercial airlock to be launched on a commercial cargo vessel and installed on the U.S. segment of the ISS in 2019.
It enhances the US capability to place equipment and payloads outside and should triple the number of small satellites like CubeSats able to be deployed.
The privately funded commercial airlock is being developed by Nanoracks in partnership with Boeing, which is the prime contractor for the space station.
The airlock will be installed on an open port on the Tranquility module – that already is home to the seven windowed domed Cupola observation deck and the commercial BEAM expandable module built by Bigelow Aerospace.
“We want to utilize the space station to expose the commercial sector to new and novel uses of space, ultimately creating a new economy in low-Earth orbit for scientific research, technology development and human and cargo transportation,” said Sam Scimemi, director, ISS Division at NASA Headquarters in Washington, in a statement.
“We hope this new airlock will allow a diverse community to experiment and develop opportunities in space for the commercial sector.”
The airlock will launch aboard one of NASA’s commercial cargo suppliers in 2019. But the agency has not specified which contractor. The candidates include the SpaceX cargo Dragon, an enhanced ATK Cygnus or potentially the yet to fly SNC Dream Chaser.
Boeing will supply the airlock’s Passive Common Berthing Mechanism (CBM) hardware to connect it to the Tranquility module.
The airlock will beef up the capability of transferring equipment, payloads and deployable satellites from inside the ISS to outside, significantly increasing the utilization of ISS, says Boeing.
“The International Space Station allows NASA to conduct cutting-edge research and technology demonstrations for the next giant leap in human exploration and supports an emerging space economy in low-Earth orbit. Deployment of CubeSats and other small satellite payloads from the orbiting laboratory by commercial customers and NASA has increased in recent years. To support demand, NASA has accepted a proposal from NanoRacks to develop the first commercially funded airlock on the space station,” says NASA.
“The installation of NanoRacks’ commercial airlock will help us keep up with demand,” said Boeing International Space Station program manager Mark Mulqueen. “This is a big step in facilitating commercial business on the ISS.”
Right now the US uses the airlock on the Japanese Experiment Module (JEM) to place payloads on the stations exterior as well as for small satellite deployments. But the demand is outstripping the JEM’s availability.
The Nanoracks airlock will be larger and more robust to take up the slack.
NASA has stipulated that the Center for the Advancement of Science in Space (CASIS), NASA’s manager of the U.S. National Laboratory on the space station, will be responsible for coordinating all payload deployments from the commercial airlock – NASA and non NASA.
“We are entering a new chapter in the space station program where the private sector is taking on more responsibilities. We see this as only the beginning and are delighted to team with our friends at Boeing,” said Jeffrey Manber, CEO of NanoRacks.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – With liftoff tentatively penciled in for mid-February, SpaceX still awaits FAA approval of a launch license for what will be the firms first Falcon 9 rocket to launch from historic pad 39A at the Kennedy Space Center – on a critical NASA mission to resupply the space station – the Federal Aviation Administration (FAA) confirmed today to Universe Today.
“The FAA is working closely with SpaceX to ensure the activity described in the application meets all applicable regulations for a launch license,” FAA spokesman Hank Price confirmed to Universe Today.
As of today, Feb. 7, SpaceX has not yet received “a license determination” from the FAA – as launch vehicle, launch pad and payload preparations continue moving forward for blastoff of the NASA contracted flight to carry science experiments and supplies to the International Space Station (ISS) aboard a SpaceX cargo Dragon atop an upgraded SpaceX Falcon 9 rocket from Launch Complex 39A on the Florida Space Coast.
“The FAA will continue to work with SpaceX to provide a license determination in a timely manner,” Price told me.
SpaceX currently has license applications pending with the FAA for both the NASA cargo launch and pad 39A. No commercial launch can take place without FAA approval.
The goal of the 22-story tall SpaceX Falcon 9 is to carry an unmanned Dragon cargo freighter for the NASA customer on the CRS-10 resupply mission to the International Space Station (ISS).
Dragon will be loaded with more than two tons of equipment, gear, food, supplies and NASA’s Stratospheric Aerosol Gas Experiment III (SAGE III) ozone mapping science payload.
The historic NASA launch pad was formerly used to launch both America’s space shuttles and astronauts on Apollo/Saturn V moon landing missions.
SpaceX, founded by billionaire CEO Elon Musk, leased Launch Complex 39A from NASA back in April 2014 and is modifying and modernizing the pad for unmanned and manned launches of the Falcon 9 as well as the Falcon Heavy.
The role of the FAA is to license commercial launches and protect the public.
“The FAA licenses commercial rocket launches and reentries to ensure the protection of public health and safety,” Price elaborated.
Last week SpaceX announced a shuffled launch schedule, whereby the NASA cargo flight on the CRS-10 resupply mission was placed first in line for liftoff from pad 39A – ahead of a commercial EchoStar communications satellite.
The aerospace company said the payload switch would allow additional time was to complete all the extensive ground support work and pad testing required for repurposing seaside Launch Complex 39A from launching the NASA Space Shuttle to the SpaceX Falcon 9.
The inaugural Falcon 9 blastoff from pad 39A has slipped repeatedly from January into February 2017.
The unofficial most recently targeted ‘No Earlier Than’ NET date for CRS-10 has apparently slipped from NET Feb 14 to Feb 17.
CRS-10 counts as SpaceX’s tenth cargo flight to the ISS since 2012 under contract to NASA.
Further launch postponements are quite possible at any time and NASA is officially stating a goal of “NET mid-February” – but with no actual target date specified.
Crews have been working long hours to transform and refurbish pad 39A and get it ready for Falcon 9 launches. Furthermore, a newly built transporter erector launcher was seen raised at the pad multiple times in recent weeks. The transporter will move the rocket horizontally up the incline at the pad, and then erect it vertically for launch.
SpaceX was previously employing pad 40 on Cape Canaveral Air Force Station for Falcon 9 launches to the ISS as well as commercial launches.
But pad 40 suffered severe damage following the unexpected launch pad explosion on Sept 1, 2016 that completely destroyed a Falcon 9 and the $200 million Amos-6 commercial payload during a prelaunch fueling test.
Furthermore it is not known when pad 40 will be ready to resume launches.
Thus SpaceX has had to switch launch pads for near term future flights and press pad 39A into service much more urgently, and the refurbishing and repurposing work is not yet complete.
Pad 39A has lain dormant for launches for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.
To date SpaceX has not rolled a Falcon 9 rocket to pad 39A, not raised it to launch position, not conducted a fueling exercise and not conducted a static fire test. All the fit checks with a real rocket remain to be run.
Once the pad is ready, SpaceX plans an aggressive launch schedule in 2017.
“The launch vehicles, Dragon, and the EchoStar satellite are all healthy and prepared for launch,” SpaceX stated.
The history making first use of a recycled Falcon 9 carrying the SES-10 communications satellite could follow as soon as March or April, if all goes well – as outlined here.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
KENNEDY SPACE CENTER, FL – SpaceX announced Sunday (Jan. 29) a significant shuffle to the Falcon 9 launch schedule, saying that a key NASA mission to resupply the space station is moving to the head of the line and will now be their first mission to launch from historic pad 39A at the Kennedy Space Center – formerly used to launch space shuttles.
The late breaking payload switch will allow SpaceX, founded by billionaire CEO Elon Musk, additional time to complete all the extensive ground support work and pad testing required for repurposing seaside Launch Complex 39A from launching the NASA Space Shuttle to the SpaceX Falcon 9.
Blastoff of the 22-story tall SpaceX Falcon 9 carrying an unmanned Dragon cargo freighter with NASA as customer on the CRS-10 resupply mission to the International Space Station (ISS) could come as soon as mid-February, said SpaceX.
“SpaceX announced today that its first launch from Launch Complex 39A (LC-39A) at NASA’s Kennedy Space Center in Florida will be the CRS-10 mission to the International Space Station,” said SpaceX in a statement.
CRS-10 counts as SpaceX’s tenth cargo flight to the ISS since 2012 under contract to NASA.
Crews have been working long hours to modify pad 39A and get it ready for Falcon 9 launches. Also, the newly built transporter erector launcher was seen raised at the pad multiple times in recent days. The transporter will move the rocket horizontally up the incline at the pad, and then erect it vertically.
“This schedule change allows time for additional testing of ground systems ahead of the CRS-10 mission,” SpaceX announced in a statement.
The surprise switch in customers means that the previously planned first Falcon 9 launch from pad 39A of the commercial EchoStar 23 communications satellite is being pushed off to a later date – perhaps late February.
Until now, EchoStar 23 was slated to be the first satellite launched by a Falcon 9 from Launch Complex 39A on NASA’s Kennedy Space Center. It could have come as soon as by the end of this week.
However, the Falcon 9 launch date from pad 39A has slipped repeatedly in January, with this week on Feb. 3 as the most recently targeted ‘No Earlier Than’ NET date.
SpaceX successfully resumed launches of the Falcon 9 earlier this month when the first flock of 10 Iridium NEXT mobile voice and data relay satellites blasted off on the Iridium 1 mission from Vandenberg Air Force Base in California on Jan. 14, 2017.
NASA now gets the first dibs for using pad 39A which has lain dormant for nearly six years since Space Shuttle Atlantis launched on the final shuttle mission STS 135 in July 2011.
The last Dragon resupply mission to the ISS blasted off on July 18, 2016 on the CRS-9 mission. The Falcon 9 first stage was also successfully recovered via a propulsive soft landing back at the Cape at night.
The last successful Falcon 9 launch from Space Launch Complex-40 took place on Aug. 14, 2016, carrying the JCSAT-16 Japanese communications satellite to orbit.
But following the unexpected launch pad explosion on Sept 1, 2016 that completely destroyed a Falcon 9 and the $200 million Amos-6 commercial payload during a prelaunch fueling test, pad 40 suffered extensive damage.
Furthermore it is not known when the pad will be ready to resume launches.
So SpaceX has had to switch launch pads for near term future flights and press pad 39A into service much more urgently, and the refurbishing and repurposing work is not yet complete.
To date SpaceX has not rolled a Falcon 9 rocket to pad 39A, not raised it to launch position, not conducted a fueling exercise and not conducted a static fire test. All the fit checks with a real rocket remain to be run.
Thus the current launch target of mid-February for CRS-10 remains a target date and not a firm launch date. EchoStar 23 is next in line.
“The launch is currently targeted for no earlier than mid-February,” SpaceX elaborated.
“Following the launch of CRS-10, first commercial mission from 39A is currently slated to be EchoStar XXIII.”
Once the pad is ready, SpaceX plans an aggressive launch schedule in 2017.
“The launch vehicles, Dragon, and the EchoStar satellite are all healthy and prepared for launch,” SpaceX stated.
The history making first use of a recycled Falcon 9 carrying the SES-10 communications satellite could follow as soon as March, if all goes well.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
At the time, Orbital ATK officials told Universe Today they were working towards efforts for the next Cygnus to launch from Wallops on the OA-7 resupply mission sometime next spring – tentatively in March 2017.
“Following a successful Antares launch for the recent OA-5 Commercial Resupply Services mission and subsequent rendezvous and berthing of the Cygnus spacecraft with the International Space Station, Orbital ATK has responded to NASA’s needs for enhanced schedule assurance for cargo deliveries and maximum capacity of critical supplies to the space station in 2017 by once again partnering with United Launch Alliance to launch Cygnus aboard an Atlas V for the upcoming OA-7 mission in the spring timeframe,” Orbital ATK said in a statement to Universe Today.
“We anticipate the earliest we may need a NASA commercial resupply mission is early 2017. We mutually agreed with Orbital ATK to use an Atlas V for the company’s seventh contracted cargo resupply mission to the space station in the spring. We will provide additional details at a later date,” NASA HQ public affairs told Universe Today for this story.
The ULA Atlas V would launch from Space Launch Complex-41 on Cape Canaveral Air Force Station.
Cygnus OA-7 will be processed and loaded at NASA’s Kennedy Space Center in Florida for later integration with the Atlas V.
When Cygnus launches on Atlas from KSC it can carry roughly over 300 pounds more to orbit vs. using Antares from Virginia.
The Cygnus OA-5 spaceship is currently still berthed at the million pound station and carried about 5100 pounds to orbit.
Thus the ISS is in good shape overall at this time from a supplies standpoint.
“Supplies and research investigations are at good levels aboard the International Space Station. In addition to Orbital ATK’s recent successful commercial resupply services mission to station in October, a Russian Progress and Japanese HTV will carry additional cargo to the orbiting laboratory before the end of the year,” NASA public affairs elaborated for this story.
Last month’s ‘Return to Flight’ liftoff of the upgraded Antares took place two years after its catastrophic failure moments after launch on October 28, 2014 with another Cygnus cargo ship bound for the International Space Station (ISS) that was destroyed along with all its precious contents.
NASA must have a robust and steady train of cargo ships flying to the ISS to keep it fully operational and stocked with research and provisions for the international crews to maximize the stations science output.
“NASA is continuously working with all our partners on range availability, space station traffic and other factors to ensure we operate station in a safe and effective way as we use it for preparing for longer duration missions farther into the solar system,” NASA PAO told me.
The Atlas V built by competitor United Launch Alliance (ULA) enjoys a 100% record of launch success and was recently employed by Orbital ATK to launch a pair of Cygnus vessels to the International Space Station in the past year – in Dec. 2015 on the OA-4 mission and March 2016 on the OA-6 mission.
Orbital ATK contracted ULA to launch Cygnus spacecraft to the ISS as an interim measure to fulfill their obligations to NASA to keep the station fully operational.
Orbital ATK Vice President Frank Culbertson had previously told me that Orbital ATK could readily launch future Cygnus spaceships on the ULA Atlas V again, if the need arose.
Seeking some near term launch stability NASA has apparently decided that that need has now arisen.
Both Atlas/Cygnus cargo missions went off without a hitch and provide a ready and working template for the upcoming OA-7 cargo ship to be processed again at KSC and launched from Cape Canaveral in the spring of 2017.
Orbital ATK says that follow on Cygnus craft will again return to the Antares rocket for Virginia launches later in 2017.
“Orbital ATK’s remaining missions to be conducted in 2017 and 2018 under the CRS-1 contract will launch aboard the company’s Antares rockets from NASA Wallops Flight Facility in Virginia.”
Altogether a trio of Cygnus vessels might launch in 2017.
“The company will be ready to support three cargo resupply missions to the station next year, and will work with NASA to finalize the flight schedule,” the company said.
“The schedule provides margin flexibility for the entire Antares workforce, who worked tirelessly for the past several months to prepare and successfully launch the upgraded rocket from Wallops Island on the OA-5 mission.”
Cygnus was designed from the start to launch on a variety of launch vehicles – in addition to Antares.
“This plan also allows NASA to again capitalize on the operational flexibility built into Orbital ATK’s Cygnus spacecraft to assure the space station receives a steady and uninterrupted flow of vital supplies, equipment and scientific experiments.”
Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.
It is not clear at this time who will shoulder the added cost of launching Cygnus OA-7 on Atlas instead of Antares.
Watch for Ken’s Antares/Atlas/Cygnus mission and launch reporting. He was reporting from on site at NASA’s Wallops Flight Facility, VA during the OA-5 launch campaign and previously from KSC for the OA-4 and OA-6 liftoffs.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
After a two year gap, the first Cygnus cargo freight train from Virginia bound for the International Space Station (ISS) arrived earlier this morning – restoring this critical supply route to full operation today, Sunday, Oct. 23.
The Orbital ATK Cygnus cargo spacecraft packed with over 2.5 tons of supplies was berthed to an Earth-facing port on the Unity module of the ISS at 10:53 a.m. EDT.
The Cygnus OA-5 mission took flight atop the first re-engined Orbital ATK Antares rocket during a spectacular Monday night liftoff on Oct. 17 at 7:40 p.m. EDT from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.
Antares pair of RD-181 first stage engines were firing with some 1.2 million pounds of liftoff thrust and brilliantly lighting up the crystal clear evening skies in every direction to the delight of hordes of spectators gathered from near and far.
Cygnus is loaded with over 5,100 pounds of science investigations, food, supplies and hardware for the space station and its six-person multinational crew.
This was the first Antares launch from Virginia in two years following the rockets catastrophic failure just moments after liftoff on Oct. 28, 2014, which doomed the Orb-3 resupply mission to the space station – as witnessed by this author.
Orbital ATK’s Antares commercial rocket had to be overhauled with the completely new RD-181 first stage engines- fueled by LOX/kerosene – following the destruction of the Antares rocket and Cygnus supply ship two years ago.
The 14 story tall commercial Antares rocket launched for the first time in the upgraded 230 configuration – powered by a pair of the new Russian-built RD-181 first stage engines.
The RD-181 replaces the previously used AJ26 engines which failed shortly after the last liftoff on Oct. 28, 2014 and destroyed the rocket and Cygnus cargo freighter.
The launch mishap was traced to a failure in the AJ26 first stage engine turbopump and forced Antares launches to immediately grind to a halt.
After a carefully choreographed five day orbital chase, Cygnus approached the million pound orbiting outpost this morning.
After it was within reach, Expedition 49 Flight Engineers Takuya Onishi of the Japan Aerospace Exploration Agency and Kate Rubins of NASA carefully maneuvered the station’s 57.7-foot (17.6-meter) Canadian-built robotic arm to reach out and capture the Cygnus OA-5 spacecraft at 7:28 a.m. EDT.
It was approximately 30 feet (10 meters) away from the station as Onishi and Rubins grappled the resupply ship with the robotic arms snares.
After leak checks, the next step is for the crew to open the hatches between the pressurized Cygnus and Unity and begin unloading the stash aboard.
The 21-foot-long (6.4-meter) spacecraft is scheduled to spend about five weeks attached to the station. The crew will pack the ship with trash and no longer needed supplies and gear.
It will be undocked in November and then conduct several science experiments, including the Saffire fire experiment and deploy cubesats.
Thereafter it will be commanded to conduct the customary destructive re-entry in Earth’s atmosphere.
The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.
Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.
Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He was reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
NASA WALLOPS FLIGHT FACILITY, VA – The ‘Return to Flight’ blastoff of Orbital ATK’s upgraded Antares rocket will have to wait one more day to come to fruition with a magnificent Monday night launch – after a technical scrub was called this afternoon, Oct. 16, at NASA’s Virginia launch base due to a faulty cable.
The launch potentially offers a thrilling skyshow to millions of US East Coast spectators if all goes well.
Despite picture perfect Fall weather, technical gremlins intervened to halt Sunday nights planned commercial cargo mission for NASA carrying 2.5 tons of science and supplies bound for the International Space Station (ISS).
The launch of the Orbital ATK CRS-5 mission is now scheduled for October 17 at 7:40 p.m. EDT, from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.
You can watch the launch live on NASA TV as well as the agency’s website beginning at 6:30 p.m. EDT Oct 17.
Mondays liftoff is slated to take place approximately 23 minutes earlier then Sunday’s hoped for time of 8:03 p.m. EDT in order to match the moment when the orbital plane of the station passes on NASA Wallops.
The weather outlook on Monday remains extremely favorable with a 95 percent chance of acceptable conditions at launch time.
A nearly full moon has risen over Antares the past few days at the launch pad.
Announcement of the launch scrub of the mission – also known as OA-5 – came just as the six hour countdown was set to begin after engineers discovered the bad cable.
“Today’s launch of Orbital ATK’s Antares rocket is postponed 24 hours due to a ground support equipment (GSE) cable that did not perform as expected during the pre-launch check out,” officials at NASA Wallops said.
The faulty cable was a component of the rocket’s hold down system at the pad, Orbital ATK officials told Universe Today after the scrub was announced.
Technicians have spares on hand and are working now to replace the cable in time to permit a Monday evening launch.
“We have spares on hand and rework procedures are in process. The Antares and Cygnus teams are not currently working any technical issues with the rocket or the spacecraft.”
Besides the cable the rocket is apparently in perfect shape.
“The Antares and Cygnus teams are not currently working any technical issues with the rocket or the spacecraft.”
Antares launches have been on hold for two years after it was grounded following its catastrophic failure just moments after liftoff on Oct. 28, 2014 that doomed the Orb-3 resupply mission to the space station – as witnessed by this author.
Orbital ATK’s Antares commercial rocket had to be overhauled with the completely new RD-181 first stage engines- fueled by LOX/kerosene – following the destruction of the Antares rocket and Cygnus supply ship two years ago.
The 14 story tall commercial Antares rocket also will launch for the first time in the upgraded 230 configuration – powered by new Russian-built first stage engines designed and manufactured by Energomesh.
The 133-foot-tall (40-meter) Antares was rolled out to pad 0A on Thursday, Oct. 13 – three days prior to Sunday’s intended launch date. It was raised to the vertical launch position on Friday.
The two stage Antares will carry the Orbital OA-5 Cygnus cargo freighter to orbit on a flight bound for the ISS and its multinational crew of astronauts and cosmonauts.
The launch marks the first nighttime liftoff of the Antares – and it could be visible up and down the eastern seaboard if weather and atmospheric conditions cooperate to provide a spectacular viewing opportunity to the most populated region in North America.
The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.
Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.
Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
NASA WALLOPS FLIGHT FACILITY, VA – After a two year stand down, an upgraded commercial Antares rocket was rolled out to the NASA Wallops launch pad on Virginia’s eastern shore and raised to its launch position today in anticipation of a spectacular Sunday night liftoff, Oct. 16, to the International Space Station (ISS) on a critical resupply mission for NASA.
Blastoff of the re-engined Orbital ATK Antares rocket is slated for 8:03 p.m. EDT on Oct. 16 from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.
Officials had to postpone this commercial resupply mission – dubbed OA-5 – from mid-week due to Cat 3 Hurricane Nicole which slammed into Bermuda yesterday, Oct. 13, packing winds of about 125 mph, and is home to a critical NASA launch tracking station.
After the storm passed, engineers found the tracking station only suffered minor damage – so the GO was given to proceed with preparation for Sunday’s nighttime launch.
“Repairs to the station have been made and the team is currently readying to support the launch,” according to NASA officials.
Engineers are still testing the station to ensure its readiness.
“The Bermuda site provides tracking, telemetry and flight terminations support for Antares launches from NASA’s Wallops Flight Facility on Virginia’s Eastern Shore. Final testing is scheduled to be conducted the morning of Oct. 15 prior to the launch readiness review later that day.”
If all goes well Antares is sure to provide a dazzling nighttime skyshow from NASA’s Virginia launch base Sunday night – and potentially offering a thrilling spectacle to millions of US East Coast spectators.
The launch window last five minutes and the weather outlook is currently favorable.
The launch will air live on NASA TV and the agency’s website beginning at 7 p.m. EDT Oct 16.
The 133-foot-tall (40-meter) Antares was rolled out to pad 0A on Thursday, Oct. 13 – three days prior to the anticipated launch date – and raised to the vertical launch position this afternoon.
The two stage Antares will carry the Orbital OA-5 Cygnus cargo freighter to orbit on a flight bound for the ISS and its multinational crew of astronauts and cosmonauts.
The launch marks the first nighttime liftoff of the Antares – and it could be visible up and down the eastern seaboard if weather and atmospheric conditions cooperate to provide a spectacular viewing opportunity to the most populated region in North America.
The 14 story tall commercial Antares rocket also will launch for the first time in the upgraded 230 configuration – powered by new Russian-built first stage engines.
Orbital ATK’s Antares commercial rocket had to be overhauled with the completely new RD-181 first stage engines – fueled by LOX/kerosene – following the destruction of the Antares rocket and Cygnus supply ship two years ago.
The RD-181 replaces the previously used AJ26 engines which failed moments after liftoff during the last launch on Oct. 28, 2014 resulting in a catastrophic loss of the rocket and Cygnus cargo freighter.
The launch mishap was traced to a failure in the AJ26 first stage engine turbopump and caused Antares launches to immediately grind to a halt.
For the OA-5 mission, the Cygnus advanced maneuvering spacecraft will be loaded with approximately 2,400 kg (5,290 lbs.) of supplies and science experiments for the International Space Station (ISS).
“Cygnus is loaded with the Saffire II payload and a nanoracks cubesat deployer,” Frank DeMauro, Orbital ATK Cygnus program manager, told Universe Today in a interview.
Among the science payloads aboard the Cygnus OA-5 mission is the Saffire II payload experiment to study combustion behavior in microgravity. Data from this experiment will be downloaded via telemetry. In addition, a NanoRack deployer will release Spire Cubesats used for weather forecasting. These secondary payload operations will be conducted after Cygnus departs the space station.
Other experiments include a study on the effect of lighting on sleep and daily rhythms, collection of health-related data, and a new way to measure neutrons.
Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.
The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.
Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Top NASA and Orbital ATK managers formally approved the launch of the upgraded commercial Antares rocket for next Thursday evening, Oct. 13, on a cargo resupply mission to the International Space Station (ISS). The announcement follows on the heels of a successful joint pre-launch Flight Readiness Review (FRR).
Blastoff of the Orbital ATK Antares rocket is slated for 9:13 p.m. EDT on Oct. 13 from the Mid-Atlantic Regional Spaceport pad 0A at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.
Antares will be rolled out to the pad 0A on Oct. 11 – two days prior to the anticipated launch date.
Antares will carry the Orbital OA-5 Cygnus cargo freighter to orbit on a flight bound for the ISS and its multinational crew of astronauts and cosmonauts.
The launch marks the first nighttime liftoff of the Antares – and it could be visible up and down the eastern seaboard if weather and atmospheric conditions cooperate to provide a spectacular viewing opportunity to the most populated region in North America.
The 14 story tall commercial Antares rocket also will launch for the first time in the upgraded 230 configuration – powered by new Russian-built first stage engines.
For the OA-5 mission, the Cygnus advanced maneuvering spacecraft will be loaded with approximately 2,400 kg (5,290 lbs.) of supplies and science experiments for the International Space Station (ISS).
“Cygnus is loaded with the Saffire II payload and a nanoracks cubesat deployer,” Frank DeMauro, Orbital ATK Cygnus program manager, told Universe Today in a interview.
Among the science payloads aboard the Cygnus OA-5 mission is the Saffire II payload experiment to study combustion behavior in microgravity. Data from this experiment will be downloaded via telemetry. In addition, a NanoRack deployer will release Spire Cubesats used for weather forecasting. These secondary payload operations will be conducted after Cygnus departs the space station.
If Cygnus launches as planned on Oct. 13, it is scheduled to arrive at the station on Sunday, Oct. 16. Astronauts will use the space station’s robotic arm to grapple Cygnus at approximately about 6:45 a.m. EDT and berth it to the bottom of the station’s Unity module.
NASA TV will provide live coverage of the launch as well as the rendezvous and grappling activities.
The Cygnus spacecraft for the OA-5 mission is named the S.S. Alan G. Poindexter in honor of former astronaut and Naval Aviator Captain Alan Poindexter.
Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.
The 2 year lull in Antares launches followed the rockets immediate grounding after its catastrophic failure just moments after liftoff on Oct. 28, 2014 that doomed the Orb-3 resupply mission to the space station – as witnessed by this author.
Orbital ATK’s Antares commercial rocket had to be overhauled with the completely new RD-181 first stage engines following the destruction of the Antares rocket and Cygnus supply ship two years ago.
In light of the grounding of the SpaceX Falcon 9 and Dragon cargo flights following the catastrophic Sept.1 launch pad disaster, and the catastrophic Antares launch failure in Oct. 2014, this Orbital ATK mission becomes more critical than ever to keep that station stocked and fully operational for the resident crews with a reliable American supply train.
In the meantime, Orbital ATK has successfully resumed launches of their Cygnus cargo freighters to the ISS utilizing the United Launch Alliance (ULA) Atlas V rocket as an interim measure until Antares is returned to flight status
They utilized the ULA Atlas V rocket to successfully deliver two Cygnus vessels to the ISS on the OA-4 flight in Dec 2015 and OA-6 flight in March 2016.
Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
NASA is targeting mid-October for the ‘Return to Flight’ launch of the upgraded Orbital ATK Antares rocket on a cargo mission to resupply the International Space Station (ISS) for the first time in nearly two years.
NASA and Orbital ATK announced that the re-engined Antares will launch during a five-day launch window that opens no earlier than October 9-13, 2016 on the OA-5 Cygnus cargo mission from the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore.
“A more specific date will be identified upon completion of final operational milestones and technical reviews,” according to statements from NASA and Orbital ATK.
If Antares launches on Oct. 9, liftoff is set 10:47 p.m. EDT and becomes progressively earlier on succeeding days. The launch time moves up to 9:13 p.m. EDT on Oct. 13.
If the launch takes place during this window, it will mark the first truly nighttime launch for Antares from Virgina.
“The arrival and berthing of Cygnus to the International Space Station will be determined by the exact launch date and in coordination with other space station activities,” says NASA.
The Cygnus cargo spacecraft was moved this week from the NASA Wallops payload processing facility to the spacecraft fueling facility on Wallops Island.
The next step is to integrate Cygnus onto the Orbital ATK Antares 230 rocket inside the HIF (Horizontal Integration Facility) in anticipation of the launch slated for no earlier than Oct. 9 at 10:47 p.m. EDT.
The Antares 230 medium-class commercial launch vehicle rocket has been upgraded with new first stage Russian-built RD-181 engines fueled by LOX/kerosene – that had to be fully validated before launching NASA’s precious cargo to the International Space Station (ISS).
For the OA-5 mission, the Cygnus advanced maneuvering spacecraft will be loaded with approximately 2,400 kg (5,290 lbs.) of supplies and science experiments for the International Space Station (ISS).
Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.
Orbital ATK’s Antares commercial rocket had to be overhauled with completely new first stage engines following the catastrophic launch failure nearly two years ago on October 28, 2018 just seconds after blastoff that doomed the Orb-3 resupply mission to the space station.
The goal of the Antares ‘Return to Flight’ mission is to launch Orbital ATK’s Cygnus cargo freighter on the OA-5 resupply mission for NASA to the ISS and restore the Antares rocket to flight status.
To that end the aerospace firm completed a successful 30 second long test firing of the re-engined first stage on May 31 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Launch Pad 0A – as I reported here earlier.
Teams from Orbital ATK and NASA have been scrutinizing the data in great detail ever since then to ensure the rocket is really ready before committing to the high stakes launch.
“Orbital ATK completed a stage test at the end of May and final data review has confirmed the test was successful, clearing the way for the Antares return to flight,” said the company.
“Simultaneously, the company has been conducting final integration and check out of the flight vehicle that will launch the OA-5 mission to ensure that all technical, quality and safety standards are met or exceeded.”
As a direct consequence of the catastrophic launch disaster, Orbital ATK managers decided to outfit the Antares medium-class rocket with new first stage RD-181 engines built in Russia.
The RD-181 replaces the previously used AJ26 engines which failed moments after liftoff during the last launch on Oct. 28, 2014 resulting in a catastrophic loss of the rocket and Cygnus cargo freighter.
The RD-181 flight engines are built by Energomash in Russia and had to be successfully tested via the static hot fire test to ensure their readiness.
Watch for Ken’s continuing Antares/Cygnus mission and launch reporting. He will be reporting from on site at NASA’s Wallops Flight Facility, VA during the launch campaign.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Orbital ATK announced late Tuesday that the company’s Antares medium-class commercial rocket outfitted with new first stage RD-181 engines has successfully completed a test firing of the powerplants.
The 30-second long static test firing took place at 5:30 p.m. Tuesday evening, May 31, at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A.
The now revamped launch vehicle – dubbed Antares 230 – has been ‘re-engined’ and upgraded with a pair of modern and more powerful first stage engines – the Russian-built RD-181 fueled by LOX/kerosene.
The engine test was conducted using only the first stage of Antares at the MARS Pad 0A at NASA’s Wallops Flight Facility.
“Early indications show the upgraded propulsion system, core stage and launch complex all worked together as planned,” said Mike Pinkston, Orbital ATK General Manager and Vice President, Antares Program.
“Congratulations to the combined NASA, Orbital ATK and Virginia Space team on a successful test.”
Orbital ATK engineers will now “review test data over the next several days to confirm that all test parameters were met”
If all goes well with the intensive data review, the company could launch Antares as soon as July on its next NASA contracted mission – known as OA-5 – to resupply the International Space Station (ISS).
The test involved firing up Antares dual first stage RD-181 engines at full 100% power (thrust) for a scheduled duration of approximately 30 seconds. Hold down restraints kept the rocket firmly anchored at the pad during the test.
The RD-181 replaces the previously used AJ26 which failed moments after liftoff during the last launch on Oct. 28, 2014 resulting in a catastrophic failure of the rocket and the Cygnus cargo freighter.
The RD-181 flight engines are built by Energomash in Russia and had to be tested via the static hot fire test to ensure their readiness.
“They are a good drop in replacement for the AJ26. And they offer 13% higher thrust compared to the AJ26,” said Kurt Eberly, Orbital ATK Antares deputy program manager, in an interview with Universe Today.
As a result of switching to the new RD-181 engines, the first stage also had to be modified to incorporate new thrust adapter structures, actuators, and propellant feed lines between the engines and core stage structure.
So the primary goal was to confirm the effectiveness of the new engines and all the changes in the integrated rocket stage.
“The successful stage test, along with the extensive testing of each new RD-181, gives us further confidence in the first stage propulsion and in moving forward to launch,” said Pinkston.
“We are now focused on the OA-5 mission and launching the enhanced Cygnus spacecraft to the International Space Station on our upgraded, higher-performing Antares rocket.”
The test used the first stage core planned to launch the OA-7 mission from Wallops late this year.
With the engine test is completed, the OA-7 stage will be rolled back to the HIF and a new stage fully integrated with the Cygnus cargo freighter will be rolled out to the pad for the OA-5 ‘Return to Flight’ mission as soon as July.
“Each of the new flight RD-181 engines has undergone hot fire acceptance testing at the manufacturer’s facility prior to being shipped to Orbital ATK. A certification test series was successfully completed in the spring of 2015 where a single engine was test fired seven times, accumulating 1,650 seconds of test time and replicating the Antares flight profile, before being disassembled for inspection,” said Orbital ATK officials.
Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.