Clouds Seen On Pluto For First Time

Recent images sent by NASA's New Horizons spacecraft show possible clouds floating over the frozen landscape including the streaky patch at right. Credit: NASA/JHUAPL/SwR
Recent images sent by NASA's New Horizons spacecraft show possible clouds floating over the frozen landscape including the streaky patch at right. Credit: NASA/JHUAPL/SwR
Recent images sent by NASA’s New Horizons spacecraft show possible clouds floating over the frozen landscape including the hazy streak right of center. Credit: NASA/JHUAPL/SwRI

I think we were all blown away when the New Horizons spacecraft looked back at Pluto’s dark side and returned the first photos of a surprisingly complex, layered atmosphere. Colorless nitrogen along with a small percentage of methane make up Pluto’s air. Layers of haze are likely created when the two gases react in sunlight to form tiny, soot-like particles called tholins. These can ultimately grow large enough to settle toward the surface and coat and color Pluto’s icy exterior.

Close up of the back side of Pluto taken by New Horizons shows multiple layers of haze in its mostly nitrogen atmosphere. Credit:
Close up of the back side of Pluto taken by New Horizons shows multiple layers of haze in its mostly nitrogen atmosphere. Credit: NASA/JHUAPL/SwRI

Now it seems Pluto’s atmosphere is capable of doing even more — making clouds! In an e-mail exchange with New Scientist, Lowell Observatory astronomer Will Grundy discusses the possibility that streaks and small condensations within the hazes might be individual clouds. Grundy also tracked a feature as it passed over different parts of the Plutonian landscape below, strongly suggesting a cloud.  If confirmed, they’d be the first-ever clouds seen on the dwarf planet, and a sign this small 1,473-mile-wide (2,370 km) orb possesses an even more complex atmosphere than imagined.

Faint arrows along Pluto's limb point to possible clouds in a low altitude haze layer. More distinct possible clouds are arrowed at left. Credit: NASA/JHUAPL/SwR
Faint arrows along Pluto’s limb point to possible clouds in a low altitude haze layer. More distinct possible clouds are arrowed at left. Credit: NASA/JHUAPL/SwRI
The smooth expanse of the informally named Sputnik Planum (right) is flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. The backlighting highlights more than a dozen layers of haze in Pluto's tenuous but distended atmosphere.
15 minutes after its closest approach, New Horizons snapped this image of the smooth expanse of Sputnik Planum (right) flanked to the west (left) by rugged mountains up to 11,000 feet (3,500 meters) high, including the informally named Norgay Montes in the foreground and Hillary Montes on the skyline. The backlighting highlights more than a dozen layers of haze in Pluto’s tenuous but distended atmosphere. Credit: NASA/JHUAPL/SwRI

Given the onion-like layers of haze and potential clouds, perhaps we shouldn’t be surprise that it snows on Pluto. The New Horizons team announced the discovery this week of a chain of exotic snowcapped mountains stretching across the dark expanse of the informally named Cthulhu Regio. Cthulhu, pronounced kuh-THU-lu and named for a character in American horror writer H.P. Lovecraft’s books, stretches nearly halfway around Pluto’s equator, starting from the west of the vast nitrogen ice plain, Sputnik Planum. At 1,850 miles (3,000 km) long and 450 miles (750 km) wide, Cthulhu is a bit larger than the state of Alaska. But ever so much colder!

A section of Cthulhu Regio boasts peaks covered in methane frost or snow.
The upper slopes of Cthulhu’s highest peaks are coated with a bright material that contrasts sharply with the dark red color of the surrounding plains. Scientists think it’s methane ice condensed from Pluto’s atmosphere. The far right panel shows the distribution of methane ice on the surface. Credit: NASA/JHUAPL/SwRI

Cthulhu’s red color probably comes from a covering of dark tholins formed when methane interacts with sunlight. But new close-up images reveal that the region’s highest mountains appear coated with a much brighter material. Scientists think it’s methane, condensed as ice onto the peaks from Pluto’s atmosphere.

“That this material coats only the upper slopes of the peaks suggests methane ice may act like water in Earth’s atmosphere, condensing as frost at high altitude,” said John Stansberry, a New Horizons science team member.

Compositional data from the New Horizon’s Ralph/Multispectral Visible Imaging Camera (MVIC), shown in the right panel in the image above, shows that the location of the bright ice on the mountain peaks correlates almost exactly with the distribution of methane ice, shown in false color as purple.

New Horizons still has plenty of images stored on its hard drive, so we’re likely to see more clouds, frosty peaks and gosh-knows-what-else as the probe speeds ever deeper into space while returning daily postcards from its historic encounter.

This Comparison of Comet 67/P With Other Solar System Bodies Will Blow Your Mind

Credit:

There’s darkness out there in the cold corners of the solar system.

And we’re not talking about a Lovecraftian darkness, the kind that would summon Cthulhu himself.  We’re talking of celestial bodies that are, well. So black, they make a Spinal Tap album cover blinding by comparison.

We recently came across the above true color comparison of Comet 67/P Churyumov-Gerasimenko adjusted for true reflectivity contrasted with other bodies in the solar system. 67/P is definitely in the “none more black” (to quote Nigel Tufnel) category as compared to, well, nearly everything.

Welcome to the wonderful world of albedo. Bob King wrote a great article last year discussing the albedo of Comet 67/P. The true albedo (or lack thereof) of 67/P as revealed by Rosetta’s NAVCAM continues to astound us. Are all comets this black close up? After all, we’re talking about those same brilliant celestial wonders that can sometimes be seen in the daytime, and are the crimson harbingers of regal change in The Game of Thrones, right?

There was also a great discussion of the dark realms of 67/P in a recent SETI Talk:

As with many things in the universe, it’s all a matter of perspective. If you live in the U.S. Northeast and are busy like we were earlier today digging yourself out from Snowmageddon 2015, then you were enjoying a planetary surface with a high albedo much more akin to Enceladus pictured above. Except, of course, you’d be shoveling methane and carbon dioxide-laced snow on the Saturnian moon… Ice, snow and cloud cover can make a world shinny white and highly reflective. Earthshine on the dark limb of the crescent Moon can even vary markedly depending on the amount of cloud and snow cover on the Earth that’s currently rotated moonward.

Earthshine or the 'Old Moon in the New Moon's arms' from earlier this week. Photo by author.
A brilliant Earthshine, or the ‘Old Moon in the New Moon’s arms’ from earlier last week. Photo by author.

To confound this, apparent magnitude over an extended object is diffused over its surface area, making the coma of a comet or a nebula appear fainter than it actually is. Engineers preparing for planetary encounters must account for changes in light conditions, or their cameras may just record… nothing.

For example, out by Pluto, Charon, and friends, the Sun is only 1/1600th as bright as seen here on sunny Earth. NASA’s New Horizons spacecraft will have to adjust for the low light levels accordingly during its historic flyby this July. On the plus side, Pluto seems to have a respectable albedo of 50% to 65%, and may well turn out to look like Neptune’s large moon, Triton.

Triton as imaged by Voyager 2: a dead ringer for Pluto? Credit: NASA/JPL.
Triton as imaged by Voyager 2: a dead ringer for Pluto? Credit: NASA/JPL.

And albedo has a role in heat absorption and reflection as well, in a phenomenon known as global dimming. The ivory snows of Enceladus have an albedo of over 95%, while gloomy Comet 67/P has an albedo of about 5%, less than that of flat black paint. A common practice here in Aroostook County Maine is to take fireplace ashes and scatter them across an icy driveway. What you’re doing is simply lowering the surface albedo and increasing the absorption of solar energy to help break up the snow and ice on a sunny day.

A high albedo snow cover blanketed New England earlier this week! Photo by author.
A high albedo snow cover blanketed New England earlier this week! Photo by author.

Ever manage to see Venus in the daytime?  We like to point out the Cytherean world in the daytime sky to folks whenever possible, often using the nearby Moon as a guide. Most folks are amazed at how easy this daytime feat of visual athletics actually is, owing to the fact that the cloud tops of Venus actually have a higher albedo of 90%, versus the Moon’s murky 8 to 12%.

Venus (upper left) by daylight. Photo by author.
Venus (upper left) by daylight. Photo by author.

Apollo 12 command module pilot Richard Gordon remarked that astronauts Al Bean and Pete Conrad looked like they’d been “playing in a coal bin” on returning from the surface of the Moon. And in case you’re wondering, Apollo astronauts reported that moondust smelled like ‘burnt gunpowder’ once they’d unsuited.

The surface of the Moon closeup: darker than you think! Credit: Apollo 12/NASA.
The surface of the Moon closeup: darker than you think! Credit: Apollo 12/NASA.

Magnitude, global dimming and planetary albedo may even play a role in SETI as well, as we begin to image Earthlike exoplanets… will our first detection of ET be the glow of their cities on the nightside of their homeworld? Does light pollution pervade the cosmos?

And a grey cosmos awaits interstellar explorers as well. Forget Captain Kirk chasing Khan through a splashy, multi-hued nebula: most are of the light grey to faded green varieties close up. Through a telescope, most nebulae are devoid of color. It’s only when a long time exposure is completed that colors too faint to see with the naked eye emerge.

All strange thoughts to consider as we scout out the dark corners of the solar system. Will the Philae lander reawaken as perihelion for Comet 67/P approaches on August 13th, 2015? Will astronauts someday have to navigate over the dark surface of a comet?

I can’t help but think as I look at the duck-like structure of 67/P that one day, those two great lobes will probably separate in a grand outburst of activity. Heck, Comet 17P/Holmes is undergoing just such an outburst now — one of the best it has generated since 2007 — though it’s still below +10th magnitude. How I’d love to get a look at Comet 17P/Holmes up close, and see just what’s going on!