A CubeSat Mission Will Detect X-rays from GRBs and Black-Hole Mergers

The long-awaited detection of gravitational waves has opened up a whole new world of astronomy. One of the key efforts is now to tie signals across multiple domains – for example, a gravitational wave and the associated electromagnetic radiation created by that same event, such as a black hole merger or a gamma-ray burst. We’ll need new equipment to detect such “multimodal” signals, especially electromagnetic ones. One such project is the Black Hole Coded Aperture Telescope (BlackCAT), which will be launched early this year by a team led by researchers at Penn State. 

Continue reading “A CubeSat Mission Will Detect X-rays from GRBs and Black-Hole Mergers”

Student Team Designs 2U CubeSat with Big Ambitions

CubeSats can be used in many different scenarios, and one of their most important uses is providing an easy path to understanding how to design, plan, and launch a mission. That was the idea behind AlbaSat, a 2U CubeSat currently under development by a team at the University of Padova with an impressive four different functional sensors packed into its tiny frame.

Continue reading “Student Team Designs 2U CubeSat with Big Ambitions”

A New Mission Watches Meteoroids Hit the Far Side of the Moon

Sometimes, it’s hard to remember that Earth is constantly being bombarded by literally tons of space debris daily. The larger bits form what we know as shooting stars, and most burn up in the atmosphere. Still, throughout our planet’s history, giant versions have caused devastation unlike anything else seen on this planet. Tracking these types of objects is typically done from the Earth, but a new mission set out by researchers in Italy has a novel idea – why not try to learn more about potential impactors by watching them hit the far side of the Moon?

Continue reading “A New Mission Watches Meteoroids Hit the Far Side of the Moon”

A Cheap Satellite with Large Fuel Tank Could Scout For Interplanetary Missions

A spacecraft that can provide the propulsion necessary to reach other planets while also being reproducible, relatively light, and inexpensive would be a great boon to larger missions in the inner solar system. Micocosm, Inc., based in Hawthorne, California, proposed just such a system via a NASA Small Business Innovation Research (SBIR) grant. Its Hummingbird spacecraft would have provided a platform to visit nearby planets and asteroids and a payload to do some basic scouting of them.

Continue reading “A Cheap Satellite with Large Fuel Tank Could Scout For Interplanetary Missions”

A 3U CubeSat Could Collect Data During an Asteroid Flyby

ESA's Asteroid Impact Mission is joined by two triple-unit CubeSats to observe the impact of the NASA-led Demonstration of Autonomous Rendezvous Technology (DART) probe with the secondary Didymos asteroid, planned for late 2022. Image: ESA

One of the great things about CubeSat designs is that they constrain the engineers who design them. Constraints are a great way to develop novel solutions to problems that might otherwise be ignored without them. As CubeSats become increasingly popular, more and more researchers are looking at how to get them to do more with less. A paper from 2020 contributes to that by designing a 3U CubeSat mission that weighs less than 4 kilograms to perform a fly-by of a Near Earth Asteroid (NEA) using entirely off-the-shelf parts.

Continue reading “A 3U CubeSat Could Collect Data During an Asteroid Flyby”

A CubeSat Mission to Phobos Could Map Staging Bases for a Mars Landing

The moons of Mars are garnering increased attention, not only because they could provide a view of the solar system’s past but also because they could provide invaluable staging areas for any future human settlement on Mars itself. However, missions specifically designed to visit Phobos, the bigger of the two moons, have met with varying stages of failure. So why not make an inexpensive mission to do so – one that could launch multiple copies of itself if necessary? That’s the idea behind a CubeSat-based mission to Phobos, known as Perseus, which was initially described back in 2020.

Continue reading “A CubeSat Mission to Phobos Could Map Staging Bases for a Mars Landing”

SpIRIT CubeSat Demonstrates a Operational Gamma and X-Ray Detector

CubeSats are becoming more and more capable, and it seems like every month, another CubeSat is launched doing something new and novel. So far, technology demonstration has been one of the primary goals of those missions, though the industry is moving into playing an active role in scientific discovery. However, there are still some hurdles to jump before CubeSats have as many scientific tools at their disposal as larger satellites. That is where the Space Industry Responsive Intelligent Thermal (SpIRIT) CubeSat, the first from the Univeristy of Melbourne’s Space Lab, hopes to make an impact. Late in 2023, it launched with a few novel systems to operate new scientific equipment, and its leaders published a paper a few months ago detailing the progress of its mission so far.

Continue reading “SpIRIT CubeSat Demonstrates a Operational Gamma and X-Ray Detector”

What Did We Learn From Manufacturing the ACS3 Solar Sail Mission?

We recently reported on the successful deployment of the solar sail of the Advanced Composite Solar Sail System (ACS3) technology demonstration mission. That huge achievement advances one of the most important technologies available to CubeSats – a different form of propulsion. But getting there wasn’t easy, and back in May, a team of engineers from NASA’s Langley Research Center who worked on ACS3 published a paper detailing the trials and tribulations they went through to prepare the mission for prime time. Let’s take a look at what they learned.

Continue reading “What Did We Learn From Manufacturing the ACS3 Solar Sail Mission?”

A Pair of CubeSats Using Ground Penetrating Radar Could Map The Interior of Near Earth Asteroids

This illustration shows the ESA's Hera spacecraft and its two CubeSats at the binary asteroid Didymos. Image Credit: ESA

Characterizing near-Earths asteroids (NEAs) is critical if we hope to eventually stop one from hitting us. But so far, missions to do so have been expensive, which is never good for space exploration. So a team led by Patrick Bambach of the Max Planck Institute for Solar System Research in Germany developed a mission concept that utilizes a relatively inexpensive 6U CubeSat (or, more accurately, two of them) to characterize the interior of NEAs that would cost only a fraction of the price of previous missions. 

Continue reading “A Pair of CubeSats Using Ground Penetrating Radar Could Map The Interior of Near Earth Asteroids”

Swarms of Orbiting Sensors Could Map An Asteroid’s Surface

It seems like every month, a new story appears announcing the discovery of thousands of new asteroids. Tracking these small body objects from ground and even space-based telescopes helps follow their overall trajectory. But understanding what they’re made of is much more difficult using such “remote sensing” techniques. To do so, plenty of projects get more up close and personal with the asteroid itself, including one from Dr. Sigrid Elschot and her colleagues from Stanford, which was supported by NASA’s Institute for Advanced Concepts back in 2018. It uses an advanced suite of plasma sensors to detect an asteroid’s surface composition by utilizing a unique phenomenon – meteoroid impacts.

Continue reading “Swarms of Orbiting Sensors Could Map An Asteroid’s Surface”