Zoom into an Ancient and Fractured Martian Landscape

Mars! Martian meteorites make their way to Earth after being ejected from Mars by a meteor impact on the Red Planet. Image: NASA/National Space Science Data Center.
Mars! Martian meteorites make their way to Earth after being ejected from Mars by a meteor impact on the Red Planet. Image: NASA/National Space Science Data Center.

Peer at this new image of Mars’ Ladon Basin and you get some notion of the violence that took place during the early history of Mars.

ESA’s Mars Express imaged the southern part of the partially buried crater informally known as Ladon Basin. The basin is the site of an ancient impact which is about 440 kilometers (273 miles) across. On an earthly scale, Ladon Basin would stretch from London to Paris or fill up most of Colorado.

These zoomable images allows you to quickly zoom into whatever part of the picture you want to see close up. Just slide the scale (between the plus and minus sign) at the bottom of the application to zoom in.

Continue reading “Zoom into an Ancient and Fractured Martian Landscape”

3 Days to Red Planet Touchdown – Watch the Harrowing Video of Car-Sized Curiosity Careening to Crater Floor


Video Caption: This 11-minute animation depicts key events of how NASA’s Mars Science Laboratory mission will land the huge rover Curiosity on Mars on August 5/6, 2012. Credit: NASA

Well, here we are 3 days from the thrilling ‘touchdown’ of Curiosity on Mars on the boldest mission yet by humans to the Red Planet – Seeking Signs of Life beyond Earth!

The Curiosity Mars Science Lab rover is by far the hardest and most complex robotic mission that NASA has ever attempted. She marks a quantum leap beyond anything tried before in terms of the technology required to land this 2000 pound beast and the science she’ll carry out for a minimum 2 year prime mission.

So watch this harrowing video (above) – Outlining how Curiosity slams into the Martian atmosphere at 13200 MPH and comes to rest at 0 MPH after surviving the “7 Minutes of Terror” with an unprecedented guided entry, rocket powered descent, neck snapping supersonic parachute deployment and never before used Sky Crane maneuver – and be sure you’re safely seated !

The car-sized Curiosity has entered the final 72 hours of careening towards a crater floor on Mars.

After the nail biting entry, descent and landing (EDL), the 6 wheeled rover Curiosity is scheduled to touchdown inside Gale Crater at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5).

“It looks a little crazy !” said Adam Steltzner, MSL Entry, Descent and Landing Lead engineer JPL , at today’s (Aug. 2) pre-landing briefing for reporters at NASA’s Jet Propulsion Lab (JPL) in Pasadena, Calif. “But it’s the least crazy compared to other methods we evaluated.”

“Everything looks good for Sunday night. Over 300 Years of human individual contributions went into the MSL EDL system. We pull 10 Earth G’s or more of acceleration during first contact with the Martian atmosphere.”

See the detailed EDL graphic below –
Image caption: Entry, Descent and Landing (EDL) Timeline – click to enlarge for full image. Credit: NASA

Curiosity is the first mobile soil and rock sampling and chemistry lab dispatched to Mars. It’s also the first astrobiology mission to Mars since the twin Viking missions of the 1970’s.

“We are about to land a small compact car on Mars with a trunk load of instruments. It’s an amazing feat, exciting and daring. It’s fantastic,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the JPL briefing.

“It’s an extreme pleasure to be here. MSL has a huge reach, to the past, the future and around the world. Since the heatshield is nearly the size of the Orion heat shield, we’ll also learn an enormous amount about how we’ll land humans on Mars.”

“MSL is a workhorse for the future,” McCuistion emphasized.

Curiosity will search for the ingredients of life in the form of organic molecules – the carbon based molecules which are the building blocks of life as we know it. The one-ton behemoth is packed to the gills with 10 state-of-the-art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6:
mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

HiRISE Camera to Attempt Imaging Curiosity’s Descent to Mars

Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) camera captured this image of Phoenix hanging from its parachute as it descended to the Martian surface. Credit: NASA/JPL/University of Arizona.

[/caption]

Note: This article was updated on Aug. 3 with additional information.

The HiRISE camera crew on the Mars Reconnaissance Orbiter will attempt an audacious repeat performance of the image above, where the team was able to capture an amazing shot of the Phoenix lander descending on a parachute to land on Mars’ north polar region. Only this time it will try to focus on the Mars Science Laboratory’s Curiosity rover descending to touch down in Gale Crater. It will be all or nothing for the HiRISE team, as they get only one shot at taking what would likely be one of the most memorable images of the entire mission for MRO.

“We’re only making one attempt on MSL here,” Christian Schaller of the HiRISE team told Universe Today. “The EDL (Entry, Descent and Landing) image is set up so that as MSL is descending, MRO will be slewing the HiRISE field of view across the expected descent path. The plan is to capture MSL during the parachute phase of descent.”

Schaller is the software developer responsible for the primary planning tools the MRO and HiRISE targeting specialists and science team members use to plan their images.

Last December, when Universe Today learned of this probable imaging attempt, HiRISE Principal Investigator Alfred McEwen confirmed for us that, indeed, the team was working to make it happen. The preferred shot would be to “capture the rover hanging from the skycrane, but the timing may be difficult,” McEwen said.

It would take an impeccable – and fortuitous – sense of timing to get that shot, but since MSL’s EDL won’t happen on a precisely exact timetable, the HiRISE team will take their one shot and see what happens.

“We’ve been gradually updating the exact timing of the sequence over the past couple of weeks as the MSL navigation team, the MRO navigation team and the MRO flight engineering team refines that descent path and MRO slew,” Schaller said via email, “and we think we’ve pretty much got it nailed down at this point. I think it’s a real testament to NASA and its partners that we can even think about doing this.”

HiRISE will actually be taking two images, but the first is a “throwaway” warmup image taken about 50 minutes prior to MSL’s descent, designed to heat the camera’s electronics up to the preferred temperature for getting good image data.

“The warmup image we’re taking is a long-exposure throwaway that we’re taking on the night side of Mars,” Schaller explained. “It’s a 5,000 microsecond per line exposure, compared to a more typical 100 microsecond per line exposure during normal surface imaging. These warmup data will be useless, and we don’t even bother sending them back to Earth; we just dump them from the MRO filesystem once the exposure is complete.”

Schaller said the warmup image starts executing at 04:17 UTC/9:17 PM PDT. The real image starts executing at 05:09 UTC/10:09 PM PDT, centered on 10:16 PM as the time MSL and MRO navigation teams have determined MSL will pass through HiRISE’s field of view.

This image will be an approximately 500 microseconds per line exposure, to match the MRO’s slew rate.


Caption: Artist impression of MRO orbiting Mars. Credit: NASA

UPDATE (Aug. 3): In checking with McEwen, he said that Mars Express and Odyssey are NOT planning to image the descent, but they are supporting EDL via UHF relay, and the plans to use CTX has been dropped.

“HiRISE plans are to definitely attempt the image, unless there is a late upset to the MRO spacecraft,” McEwen said via email on August 3. “The engineers estimate we have a 60% chance of capturing MSL in our image.”

MRO’s Context Camera (CTX) will also be attempting to image Curiosity’s descent, as will NASA’s Mars Odyssey and ESA’s Mars Express and all the spacecraft have been performing special maneuvers to be aligned in just the right place – nearby to MSL’s point of entry into Mars’ atmosphere.

While Odyssey and Mars Express’ cameras may not have the resolving power to capture MSL itself, the powerful HiRISE camera does. However, it has a narrower field of view, so as much skill and planning as this requires, the team will need a little luck, too. But there’s also the CTX.

“CTX has a much larger field of view and will likely capture it,” McEwen said, “but at 20X lower resolution than HiRISE, which should still be good enough to detect the parachute.”

For those concerned about the fuel required for all these orbiters to reposition themselves just to take a few pictures, the expenditure is nothing that isn’t required anyway. All the spacecraft need to be in position to support MSL during the critical EDL event, and the images are pure extra-benefit, if not an incredible exercise for the imaging teams.

So while we’ll all be crossing our fingers for a successful landing for Curiosity, I’m on my way to find a rabbit’s foot or 4-leaf clover for HiRISE.

4 Days to Mars: Curiosity activates Entry, Descent and Landing Timeline – EDL Infographic

It’s 4 Days to Mars – and NASA’s Curiosity Mars Science Lab (MSL) spacecraft is now flying under the control of the crafts autonomous entry, descent and landing timeline and picking up speed as she plunges ever faster to the Red Planet and her Rendezvous with Destiny.

“Timeline activated. Bleep-bop. I’m running entry, descent & landing flight software all on my own. Countdown to Mars: 5 days,” Curiosity tweeted Tuesday night.

See below an EDL explanatory infographic timeline outlining the critical sequence of events which must unfold perfectly for Curiosity to safely survive the “7 Minutes of Terror” set to begin on the evening of August 5/6.

Aug. 1 TV Viewing Alert – 11:30 PM EDT – see NASA Science Chief John Grunsfeld tonight (Wed, Aug. 1) on the Colbert Report


Image Caption: Curiosity EDL infographic – – click to enlarge

And the excitement is building rapidly for NASA’s biggest, boldest mission ever to the Red Planet as the flight team continues to monitor Curiosity’s onboard systems and flight trajectory. Yesterday, the flight team successfully carried out a memory test on the software for the mechanical assembly that controls MSL’s descent motor, configured the spacecraft for its transition to entry, descent and landing approach mode, and they enabled the spacecraft’s hardware pyrotechnic devices.

Curiosity remains healthy and on course. If fine tuning for the targeted landing ellipse is needed, the next chance to fire on board thrusters to adjust the trajectory is Friday, Aug. 3.

The 4th of 6 possible Trajectory Correction Maneuver (TCM) firings was just accomplished on Sunday, July 29 – details here.

The car sized Curiosity rover is scheduled to touchdown on Mars at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5) inside Gale Crater and next to a 3 mile (5 km) mountain taller that the tallest in the US.

Gale Crater is 154 km (96 mi) in diameter and dominated by a layered mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of past or present Martian life.

Curiosity is packed with 10 state-of-the-art science experiments that will search for organic molecules and clay minerals, potential markers for signs of Martian microbial life and habitable zones.

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6:
mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

Curiosity’s Grand Entrance with Star Trek’s William Shatner and Wil Wheaton – Video Duet

Video Caption: Star Trek’s Captain Kirk, actor William Shatner, guides viewers through the video titled, “Grand Entrance,” showing NASA’s Curiosity Mars Science Lab mission from atmospheroic entry through descent, and after landing on the Red Planet on August 6 2012.

As NASA engineers and scientists make final preparations for the Red Planet landing of NASA’s most difficult planetary science mission to date – the Curiosity Mars Science Lab – inside Gale Crater on the night of August 5/6, Star Trek actors William Shatner and Wil Wheaton lend their voices to a pair of new mission videos titled “Grand Entrance”

The video duet describes the thrilling story of how Curiosity will touch down on Mars and guides viewers through the nail biting “7 Minutes of Terror” – from entry into the Martian atmosphere at over 13,000 MPH and then how the rover must slow down through descent, set down for a soft and safe landing and ultimately how Curiosity will search for signs of life. Continue reading “Curiosity’s Grand Entrance with Star Trek’s William Shatner and Wil Wheaton – Video Duet”

Curiosity Completes Crucial Course Correction – 1 Week from Mars !

Image Caption: Course correcting thruster firings on July 29 successfully placed Curiosity on target to touchdown beside Mount Sharp inside Gale Crater on Mars on Aug 6 in search of signs of a habitable environment. Credit: NASA

Now just 1 week out from landing beside a 3 mile high (5 km) layered Martian mountain in search of life’s ingredients, aiming thrusters aboard the cruise stage of NASA’s car sized Curiosity Mars Science Lab successfully fired to set the rover precisely on course for a touchdown on Mars at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5).

Two precise and brief thruster bursts lasting about 7 seconds were successfully carried out just hours ago earlier today at 1 a.m. on July 29, EDT (10 p.m. PDT on July 28). The effect was to change the spacecraft’s velocity by about 1/40 MPH or 1 cm/sec as it smashes into Mars at about 13,200 mph (5,900 meters per second).

This was the fourth and possibly last of 6 interplanetary Trajectory Correction Manuevers (TCM’s) planned by mission engineers to steer Curiosity since departing Earth for the Red Planet.

If necessary, 2 additional TCM’s could be implemented in the final 48 hours next Saturday and Sunday before Curiosity begins plunging into the Martian atmosphere late Sunday night on a do or die mission to land inside the 100 mile wide Gale Crater with a huge mountain in the middle. All 6 TCM maneuvers were preplanned long before the Nov 26, 2011 liftoff from Cape Canaveral, Florida.

Without this course correction firing, MSL would have hit a point at the top of the Martian atmosphere about 13 miles (21 kilometers) east of the target entry point. During the preprogrammed Entry, Descent and Landing (EDL) sequence the vehicle can steer itself in the upper atmosphere to correct for an error amounting to a few miles.

On landing day, MSL can steer enough during its flight through the upper atmosphere to correct for missing the target entry aim point by a few miles and still land on the intended patch of Mars real estate. The mission’s engineers and managers rated the projected 13-mile miss big enough to warrant a correction maneuver.

“The purpose of this maneuver is to move the point at which Curiosity enters the atmosphere by about 13 miles,” said Tomas Martin-Mur of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., chief of the mission’s navigation team. “The first look at telemetry and tracking data afterwards indicates the maneuver succeeded as planned.”


Image Cation: Curiosity Mars Science Laboratory Rover – inside the Cleanroom at KSC, with robotic arm extended prior to encapsulation and Nov. 26, 2011 liftoff. Credit: Ken Kremer/kenkremer.com

As of today (July 30), Curiosity has traveled about 97% of the overall journey to Mars or about 343 million miles (555 million kilometers) of its 352-million-mile (567-million-kilometer) total flight distance.

“I will not be surprised if this was our last trajectory correction maneuver,” Martin Mur said of the TCM-4 firing. “We will be monitoring the trajectory using the antennas of the Deep Space Network to be sure Curiosity is staying on the right path for a successful entry, descent and landing.”

Curiosity will use an unprecedented rocket powered descent stage and a helicopter like sky crane to set down astride the sedimentary layers of Mount Sharp.

She will then conduct a minimum 2 year prime mission with the most sophisticated science instrument package ever dispatched to Mars to determine if a habitable zone ever existed on this region of Mars.

Curiosity will search for the ingredients of life in the form of organic molecules – the carbon based molecules which are the building blocks of life as we know it. The one-ton behemoth is packed to the gills with 10 state of the art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

As Curiosity dives down to Mars surface on Aug. 6, 3 spacecraft from NASA and ESA are now positioned in orbit around the Red Planet and are ready to relay and record signals from the “7 Minutes of Terror” – Read the details in my article – here

Watch NASA TV online for live coverage of the Curiosity landing on Aug 5/6:
mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

T Minus 9 Days – Mars Orbiters Now in Place to Relay Critical Curiosity Landing Signals

Image Caption: NASA’s Mars Odyssey will relay near real time signals of this artist’s concept depicting the moment that NASA’s Curiosity rover touches down onto the Martian surface. NASA’s Mars Reconnaissance Orbiter (MRO) and ESA’s Mars Express (MEX) orbiter will also record signals from Curiosity for later playback, not in real time. Credit: NASA

It’s now just T minus 9 Days to the most difficult and complex Planetary science mission NASA has ever attempted ! The potential payoff is huge – Curiosity will search for signs of Martian life

The key NASA orbiter at Mars required to transmit radio signals of a near real-time confirmation of the August 5/6 Sunday night landing of NASA’s car sized Curiosity Mars Science Lab (MSL) rover is now successfully in place, and just in the nick of time, following a successful thruster firing on July 24.

Odyssey will transmit the key signals from Curiosity as she plunges into the Martian atmosphere at over 13,000 MPH (21,000 KPH) to begin the harrowing “7 Minutes of Terror” known as “Entry, Descent and Landing” or EDL – all of which is preprogrammed !

Engines aboard NASA’s long lived Mars Odyssey spacecraft fired for about 6 seconds to adjust the orbiters location about 6 minutes ahead in its orbit. This will allow Odyssey to provide a prompt confirmation of Curiosity’s landing inside Gale crater at about 1:31 a.m. EDT (531 GMT) early on Aug. 6 (10:31 p.m. PDT on Aug. 5) – as NASA had originally planned.

Without the orbital nudge, Odyssey would have arrived over the landing site about 2 minutes after Curiosity landed and the signals from Curiosity would have been delayed.

A monkey wrench was recently thrown into NASA relay signal plans when Odyssey unexpectedly went into safe mode on July 11 and engineers weren’t certain how long recovery operations would take.

“Information we are receiving indicates the maneuver has completed as planned,” said Mars Odyssey Project Manager Gaylon McSmith of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “Odyssey has been working at Mars longer than any other spacecraft, so it is appropriate that it has a special role in supporting the newest arrival.”

Odyssey has been in orbit at Mars since 2001 conducting orbital science investigations.

Read my review article on Odyssey’s science discoveries – here

Odyssey serves as the primary communications relay for NASA’s other recent surface explorers – Opportunity, Spirit and Phoenix. Opportunity recently passed 3000 Sols of continuous operations.

Two other Mars orbiters, NASA’s Mars Reconnaissance Orbiter and the European Space Agency’s Mars Express, also will be in position to receive radio transmissions from the Mars Science Laboratory during its descent. However, they will be recording information for later playback, not relaying it immediately, as only Odyssey can.

“We began optimising our orbit several months ago, so that Mars Express will have an orbit that is properly “phased” and provides good visibility of MSL’s planned trajectory,” says Michel Denis, Mars Express Spacecraft Operations Manager.

Mars Express has been orbiting the planet since December 2003.


Image Caption: Mars Express supports Curiosity MSL. Credit: ESA

“NASA supported the arrival of Mars Express at Mars in 2003, and, in the past few years, we have relayed data from the rovers Spirit and Opportunity,” says ESA’s Manfred Warhaut, Head of Mission Operations.

“Mars Express also tracked the descent of NASA’s Phoenix lander in 2008 and we routinely share our deep space networks.

“Technical and scientific cooperation at Mars between ESA and NASA is a long-standing and mutually beneficial activity that helps us both to reduce risk and increase the return of scientific results.”

Watch NASA TV online for live coverage of Curiosity landing: mars.jpl.nasa.gov or www.nasa.gov

Ken Kremer

Will Curiosity Look for Life on Mars? Not Exactly…

“Curiosity is not a life detection mission. We’re not actually looking for life and we don’t have the ability to detect life if it was there. What we are looking for is the ingredients of life.”
– John Grotzinger, MSL Project Scientist

And with these words this latest video from NASA’s Jet Propulsion Laboratory begins, explaining what Curiosity’s goal will be once it arrives on Mars on August 5. There will be a lot of media coverage of the event and many news stories as the date approaches, and some of these will undoubtedly refer to Mars Science Laboratory as a “search for life on Mars” mission… but in reality the focus of MSL is a bit subtler than that (if no less exciting.)

But hey, one can always dream

Video: NASA/JPL

New “Flying Tea Kettle” Could Get Us To Mars in Weeks, Not Months

At 54.6 million km away at its closest, the fastest travel to Mars from Earth using current technology (and no small bit of math) takes around 214 days — that’s about 30 weeks, or 7 months. A robotic explorer like Curiosity may not have any issues with that, but it’d be a tough journey for a human crew. Developing a quicker, more efficient method of propulsion for interplanetary voyages is essential for future human exploration missions… and right now a research team at the University of Alabama in Huntsville is doing just that.

This summer, UAHuntsville researchers, partnered with NASA’s Marshall Space Flight Center and Boeing, are laying the groundwork for a propulsion system that uses powerful pulses of nuclear fusion created within hollow 2-inch-wide “pucks” of lithium deuteride. And like hockey pucks, the plan is to “slapshot” them with plasma energy, fusing the lithium and hydrogen atoms inside and releasing enough force to ultimately propel a spacecraft — an effect known as “Z-pinch”.

“If this works,” said Dr. Jason Cassibry, an associate professor of engineering at UAH, “we could reach Mars in six to eight weeks instead of six to eight months.”

Read: How Long Does It Take To Get To Mars?

The key component to the UAH research is the Decade Module 2 — a massive device used by the Department of Defense for weapons testing in the 90s. Delivered last month to UAH (some assembly required) the DM2 will allow the team to test Z-pinch creation and confinement methods, and then utilize the data to hopefully get to the next step: fusion of lithium-deuterium pellets to create propulsion controlled via an electromagnetic field “nozzle”.

Although a rocket powered by Z-pinch fusion wouldn’t be used to actually leave Earth’s surface — it would run out of fuel within minutes — once in space it could be fired up to efficiently spiral out of orbit, coast at high speed and then slow down at the desired location, just like conventional rockets except… better.

“It’s equivalent to 20 percent of the world’s power output in a tiny bolt of lightning no bigger than your finger. It’s a tremendous amount of energy in a tiny period of time, just a hundred billionths of a second.”

– Dr. Jason Cassibry on the Z-pinch effect

In fact, according to a UAHuntsville news release, a pulsed fusion engine is pretty much the same thing as a regular rocket engine: a “flying tea kettle.” Cold material goes in, gets energized and hot gas pushes out. The difference is how much and what kind of cold material is used, and how forceful the push out is.

Everything else is just rocket science.

Read more on the University of Huntsville news site here and on al.com. Also, Paul Gilster at Centauri Dreams has a nice write-up about the research as well as a little history of Z-pinch fusion technology… check it out. Top image: Mars imaged with Hubble’s Wide-Field Planetary Camera 2 in March 1995.

Take a Peek Inside Curiosity’s Shell

LED-lit image from Mars Science Laboratory inside its shell (NASA/JPL-Caltech/Malin Space Science Systems)

[/caption]

Take a look around Curiosity’s cozy cabin! Ok, there’s really not much to see (she didn’t get a window seat) but when the image above was taken by the rover’s Mars Hand Lens Imager (MAHLI) camera on April 20, the spacecraft she’s tucked into was just over 120 million km (74 million miles) from Earth, en route to Mars. In other words, just past those blurry components and outside that dark shell is real outer space… that’s cool!

This color image was planned by the MSL team, used to confirm that MAHLI is operating as it should. The two green dots are reflections of the camera’s LED lights, and the rusty-orange out-of-focus parts are cables. The silver thing is a bracket holding said cables.

So why is this fancy camera taking blurry pictures (and the folks at NASA are happy about it?) Since MAHLI is designed to take both close-up images of rocks on Mars as well as landscape shots, it has a focusing motor. But when it’s not in use — such as during its current 11-month-long cruise to Mars — the motor puts the focusing lens into a safe position to protect it from damage during launch, entry and landing.

Where is Curiosity now?

Positioned this way, MAHLI can only focus on objects 2 cm (less than an inch) away from its lens, and there simply aren’t any inside the capsule.

Of course, once Curiosity arrives at Mars and completes her exciting landing at Gale Crater, MAHLI will have plenty of things to take pictures of! Until then we’ll be patient, it can take a rest and we can rest assured that it’s working just fine.

Keep up with the latest news from the Mars Science Laboratory team here.

Labeled parts of the MSL rover (NASA/Kim Shiflett; cropping/annotation by Malin Space Science Systems)

San Diego-based Malin Space Science Systems (MSSS) built and operates the Mars Hand Lens Imager (MAHLI) aboard the Curiosity Mars rover. MSSS also built and operates the rover’s Mastcams and Mars Descent Imager. Read more about their contributions to Curiosity’s exploration mission here.