Supernova explosions are fascinating because they’re so cataclysmic, powerful, and awe-inspiring. They’re Nature’s summer blockbusters. Humans have recorded their existence in ancient astronomical records and stone carvings, and in our age, with telescopes.
Now, the Dark Energy Survey (DES) has uncovered the largest number of Type 1A supernovae ever found with a single telescope.
The age of big data is upon us, and there are scarcely any fields of scientific research that are not affected. Take astronomy, for example. Thanks to cutting-edge instruments, software, and data-sharing, observatories worldwide are accumulating hundreds of terabytes in a single day and between 100 to 200 Petabytes a year. Once next-generation telescopes become operational, astronomy will likely enter the “exabyte era,” where 1018 bytes (one quintillion) of data are obtained annually. To keep up with this volume, astronomers are turning to machine learning and AI to handle the job of analysis.
While AI plays a growing role in data analysis, there are some instances where citizen astronomers are proving more capable. While examining data collected by the Dark Energy Survey (DES), amateur astronomer Giuseppe Donatiello discovered three faint galaxies that a machine-learning algorithm had apparently missed. These galaxies, all satellites of the Sculptor Galaxy (NGC 253), are now named Donatello II, III, and IV, in his honor. In this day of data-driven research, it’s good to know that sometimes there’s no substitute for human eyeballs and intellect.
In August 2013, the Dark Energy Survey (DES) began its six-year mission to map thousands of galaxies, supernovae, and patterns in the cosmic structure. This international collaborative effort is dedicated to investigating the mysterious phenomenon known as Dark Energy. This theoretical force counter-acts gravity and accounts for 70% of the Universe’s energy-mass density. Their primary instrument in this mission is the 570-megapixel Dark Energy Camera (DECam), mounted on the Victor M. Blanco 5-meter (16.4 ft) telescope at the Cerro Tlelolo Inter-American Observatory in Chile.
Between 2013 and 2019, the DECam took over one million exposures of the southern night sky and photographed around 2.5 billion astronomical objects – including galaxies, galaxy clusters, stars, comets, asteroids, dwarf planets, and supernovae. For our viewing pleasure, the Dark Energy Survey recently released fifteen spectacular images taken by the DECam during the six-year campaign. These images showcase the capabilities of the DECam, the types of objects it observed, and the sheer beauty of the Universe!
According to our current Cosmological models, the Universe began with a Big Bang roughly 13.8 billion years ago. During the earliest periods, the Universe was permeated by an opaque cloud of hot plasma, preventing atoms from forming. About 380,000 years later, the Universe began to cool and much of the energy generated by the Big Bang converted into light. This afterglow is now visible to astronomers as the Cosmic Microwave Background (CMB), first observed during the 1960s.
One peculiar characteristic about the CMB that attracted a lot of attention was the tiny fluctuations in temperature, which could provide information about the early Universe. In particular, there is a rather large spot in the CMB that is cooler than the surrounding afterglow, known as the CMB Cold Spot. After decades of studying the CMB’s temperature fluctuations, a team of scientists recently confirmed the existence of the largest cold spots in the CMB afterglow – the Eridanus Supervoid – might be the explanation for the CMB Cold Spot that astronomers have been looking for!
In the near future, astronomers will benefit from the presence of next-generation telescopes like the James Webb Space Telescope (JWST) and theNancy Grace Roman Space Telescope (RST). At the same time, improved data mining and machine learning techniques will also allow astronomers to get more out of existing instruments. In the process, they hope to finally answer some of the most burning questions about the cosmos.
For instance, the Dark Energy Survey (DES ), an international, collaborative effort to map the cosmos, recently released the results of their six-year survey of the outer Solar System. In addition to gathering data on hundreds of known objects, this survey revealed 461 previously undetected objects. The results of this study could have significant implications for our understanding of the Solar System’s formation and evolution.
Cosmology is now stranger to large scale surveys. The discipline prides itself on data collection, and when the data it is collecting is about galaxies that are billions of years old its easy to see why more data would be better. Now, with a flurry of 29 new papers, the partial results from the largest cosmological survey ever – the Dark Energy Survey (DES) – have been released. And it largely confirms what we already knew.
The Magellanic Clouds are two of our closest neighbours, in galactic terms. The pair of irregular dwarf galaxies were drawn into the Milky Way’s orbit in the distant past, and we’ve been looking up at them since the dawn of humanity. Some of our ancestors even gathered pigments and created images of them in petroglyphs and cave paintings.
Following in the footsteps of those ancient artists, astronomers recently used the Dark Energy Camera (DECam) to capture an in-depth portrait of the pair of galaxies.
Hey Pluto, Sedna, Haumea, Makemake Et al.: You’ve got company!
While searching for distant galaxies and supernovae, the Dark Energy Survey’s powerful 570-megapixel digital camera spotted a few other moving “dots” in its field of view. Turns out, the DES has found more than 100 previously unknown trans-Neptunian objects (TNOs), minor planets located in Kuiper Belt of our Solar System.
A new paper describes how the researchers connected the moving dots to find the new TNOs, and also says this new approach could help look for the hypothetical Planet Nine and other undiscovered worlds.
Guess you never know what you’ll find once you start looking!
Dark Energy is the mysterious force driving the expansion of the Universe. We don’t know what dark energy is, even though it makes up about 68% of the Universe. And the expansion is accelerating, which only adds to the mystery.
A supernova is one of the most impressive natural phenomena in the Universe. Unfortunately, such events are often brief and transient, temporarily becoming as bright as an entire galaxy and then fading away. But given what these bright explosions – which occur when a star reaches the end of its life cycle – can teach us about the Universe, scientists are naturally very interested in studying them.
Using data from the Dark Energy Survey Supernova (DES-SN) program, a team of astronomers recently detected 72 supernovae, the largest number of events discovered to date. These supernovae were not only very bright, but also very brief – a finding which the team is still struggling to explain. The results of their study were presented on Tuesday, April 3rd, at the European Week of Astronomy and Space Science in Liverpool.
The team was led by Miika Pursiainen, a PhD researcher from the University of Southampton. For the sake of their study, the team relied on data from the 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). This telescope is part of the Dark Energy Survey, a global effort to map hundreds of millions of galaxies and thousands of supernovae in to find patterns int he cosmic structure that will reveal the nature of dark energy.
As Pursiainen commented in a recent Southampton news release:
“The DES-SN survey is there to help us understand dark energy, itself entirely unexplained. That survey then also reveals many more unexplained transients than seen before. If nothing else, our work confirms that astrophysics and cosmology are still sciences with a lot of unanswered questions!”
As noted, these events were very peculiar in that they had a similar maximum brightness compared to different types of supernove, they were visible for far less time. Whereas supernova typically last for several months or more, these transient supernovae were visible for about a week to a month. The events also appeared to be very hot, with temperatures ranging from 10,000 to 30,000 °C (18,000 to 54,000 °F).
They also vary considerably in size, ranging from being several times the distance between the Earth and the Sun – 150 million km, 93 million mi (or 1 AU) – to hundreds of times. However, they also appear to be expanding and cooling over time, which is what is expected from an event like a supernova. Because of this, there is much debate about the origin of these transient supernovae.
A possible explanation is that these stars shed a lot of material before they exploded, and that this could have shrouded them in matter. This material may then have been heated by the supernovae themselves, causing it to rise to very high temperatures. This would mean that in these cases, the team was seeing the hot clouds rather than the exploding stars themselves.
This certainly would explain the observations made by Pursiainen and his team, though a lot more data will be needed to confirm this. In the future, the team hopes to examine more transients and see how often they occur compared to more common supernovae. The study of this powerful and mysterious phenomenon will also benefit from the use of next-generation telescopes.
When the James Webb Space Telescope is deployed in 2020, it will study the most distant supernovae in the Universe. This information, as well as studies performed by ground-based observatories, is expected to not only shed light on the life cycle of stars and dark energy, but also on the formation of black holes and gravitational waves.