Astronomers saw the Same Supernova Three Times Thanks to Gravitational Lensing. And in Twenty Years They Think They’ll see it one More Time

It is hard for humans to wrap their heads around the fact that there are galaxies so far away that the light coming from them can be warped in a way that they actually experience a type of time delay.  But that is exactly what is happening with extreme forms of gravitational lensing, such as those that give us the beautiful images of Einstein rings.  In fact, the time dilation around some of these galaxies can be so extreme that the light from a single event, such as a supernova, can actually show up on Earth at dramatically different times.  That is exactly what a team led by Dr. Steven Rodney at the University of South Carolina and Dr. Gabriel Brammer of the University of Copenhagen has found. Except three copies of this supernova have already appeared – and the team thinks it will show up again one more time, 20 years from now.

Continue reading “Astronomers saw the Same Supernova Three Times Thanks to Gravitational Lensing. And in Twenty Years They Think They’ll see it one More Time”

Dark Energy Survey is out. 29 Papers Covering 226 Million Galaxies Across 7 Billion Light-Years of Space

Cosmology is now stranger to large scale surveys.  The discipline prides itself on data collection, and when the data it is collecting is about galaxies that are billions of years old its easy to see why more data would be better.  Now, with a flurry of 29 new papers, the partial results from the largest cosmological survey ever – the Dark Energy Survey (DES) – have been released.  And it largely confirms what we already knew.

Continue reading “Dark Energy Survey is out. 29 Papers Covering 226 Million Galaxies Across 7 Billion Light-Years of Space”

11-Sigma Detection of Dark Energy Comes From Measuring Over a Million Extremely Distant Galaxies

Exploration of the Universe by the SDSS mission during the past two decades (1998-2019). Credit: eBOSS collaboration

After galaxies began to form in the early universe, the universe continued to expand. The gravitational attraction between galaxies worked to pull galaxies together into superclusters, while dark energy and its resulting cosmic expansion worked to drive these clusters apart. As a result, the universe is filled with tight clusters of galaxies separated by vast voids of mostly empty space.

Continue reading “11-Sigma Detection of Dark Energy Comes From Measuring Over a Million Extremely Distant Galaxies”

A New Technique to Find Cold Gas Streams That Might Make up the Missing (Normal) Matter in the Universe

Credit: Mark Myers, OzGrav/Swinburne University

Where is all the missing matter? That question has plagued astronomers for decades, because the Universe looks emptier than it should, given current theories about its makeup. Most of the Universe (70%) appears to be composed of Dark Energy, the mysterious force which is causing the Universe’s rate of expansion to increase. Another 25% of the Universe is Dark Matter, an unknown substance which cannot be seen, but has been theorized to explain the otherwise inexplicable gravitational forces which govern the formation of galaxies. That leaves Baryonic Matter – all the normal ‘stuff’ like you, me, the trees, the planets, and the stars – to make up just 5% of the Universe. But when astronomers look out into the sky, there doesn’t even seem to be enough normal matter to make up 5%. Some of the normal matter is missing!

Continue reading “A New Technique to Find Cold Gas Streams That Might Make up the Missing (Normal) Matter in the Universe”

Astronomers can use Pulsars to Measure Tiny Changes of Acceleration Within the Milky Way, Scanning Internally for Dark Matter and Dark Energy

Using pulsars to measure mass distribution in the Milky Way. Credit: Dana Berry, IAS

As our Sun moves along its orbit in the Milky Way, it is gravitationally tugged by nearby stars, nebulae, and other masses. Our galaxy is not a uniform distribution of mass, and our Sun experiences small accelerations in addition to its overall orbital motion. Measuring those small tugs has been nearly impossible, but a new study shows how it can be done.

Continue reading “Astronomers can use Pulsars to Measure Tiny Changes of Acceleration Within the Milky Way, Scanning Internally for Dark Matter and Dark Energy”

One of These Pictures Is the Brain, the Other is the Universe. Can You Tell Which is Which?

Left: section of cerebellum, with magnification factor 40x, obtained with electron microscopy (Dr. E. Zunarelli, University Hospital of Modena); right: section of a cosmological simulation, with an extension of 300 million light-years on each side (Vazza et al. 2019 A&A).

“Science is not only compatible with spirituality; it is a profound source of spirituality. When we recognize our place in an immensity of light years and in the passage of ages, when we grasp the intricacy, beauty and subtlety of life, then that soaring feeling, that sense of elation and humility combined, is surely spiritual.” – Carl Sagan “The Demon-Haunted World.”

Learning about the Universe, I’ve felt spiritual moments, as Sagan describes them, as I better understand my connection to the wider everything. Like when I first learned that I was literally made of the ashes of the stars – the atoms in my body spread into the eternal ether by supernovae. Another spiritual moment was seeing this image for the first time:

Hippocampal mouse neuron studded with synaptic connections (yellow), courtesy Lisa Boulanger, from https://www.eurekalert.org/multimedia/pub/81261.php. The green central cell body is ? 10µm in diameter. B. Cosmic web (Springel et al., 2005). Scale bar = 31.25 Mpc/h, or 1.4 × 1024 m. Juxtaposition inspired by Lima (2009).
Continue reading “One of These Pictures Is the Brain, the Other is the Universe. Can You Tell Which is Which?”

A New Telescope is Ready to Start Searching for Answers to Explain Dark Energy

An illustration of cosmic expansion. Credit: NASA's Goddard Space Flight Center Conceptual Image Lab

Back in 2015, construction began on a new telescope called the Dark Energy Spectroscopic Instrument (DESI). Later this year, it will begin its five-year mission. Its goal? To create a 3D map of the Universe with unprecedented detail, showing the distribution of matter.

That detailed map will allow astronomers to investigate important aspects of cosmology, including dark energy and its role in the expansion of the Universe.

Continue reading “A New Telescope is Ready to Start Searching for Answers to Explain Dark Energy”

A New Test Confirms Dark Energy and the Expansion of the Universe

A map of galaxy clustering in the universe. Credit: Seshadri Nadathur

In the standard model of cosmology, dark energy fills the universe. It causes the universe to expand at an ever-increasing rate, and it makes up more than 70% of the cosmos. But there’s a problem. When we measure the rate of cosmic expansion in different ways, we get results that disagree with each other.

Continue reading “A New Test Confirms Dark Energy and the Expansion of the Universe”

Hundreds of New Gravitational Lenses Discovered to Help Study the Distant Universe

These two columns show side-by-side comparisons of gravitational lens candidates imaged by the ground-based Dark Energy Camera Legacy Survey (color) and the Hubble Space Telescope (black and white). (Credit: Dark Energy Camera Legacy Survey, Hubble Space Telescope)
These two columns show side-by-side comparisons of gravitational lens candidates imaged by the ground-based Dark Energy Camera Legacy Survey (color) and the Hubble Space Telescope (black and white). (Credit: Dark Energy Camera Legacy Survey, Hubble Space Telescope)

General relativity tells us that everything, even light, is affected by the mass of an object. When a beam of light passes near a large mass, its path is deflected. This shift in the direction of light is known as gravitational lensing, and it was one of the first confirmed effects of Einstein’s theory.

Continue reading “Hundreds of New Gravitational Lenses Discovered to Help Study the Distant Universe”

New observations show that the Universe might not be expanding at the same rate in all directions

How cosmic expansion is measured. Credit: NASA, ESA and A. Feild (STScI)

When we look at the world around us, we see patterns. The Sun rises and sets. The seasons cycle through the year. The constellations drift across the night sky. As we’ve studied these patterns, we’ve developed scientific laws and theories that help us understand the cosmos. While our theories are powerful, they are still rooted in some fundamental assumptions. One of these is that the laws of physics are the same everywhere. This is known as cosmic isotropy, and it allows us to compare what we see in the lab with what we see light-years away.

Continue reading “New observations show that the Universe might not be expanding at the same rate in all directions”