Nearby Ancient Dwarf Galaxies Have a Surprising Amount of Dark Matter

An artist's impression of the four tails of the Sagittarius Dwarf Galaxy (the orange clump on the left of the image) orbiting the Milky Way. The bright yellow circle to the right of the galaxy's center is our Sun (not to scale). Image credit: Amanda Smith (University of Cambridge)

Around the Milky Way, there are literally dozens of dwarf galaxies that continue to be slowly absorbed into our own. These galaxies are a major source of interest for astronomers because they can teach us a great deal about cosmic evolution, like how smaller galaxies merged over time to create larger structures. Since they are thought to be relics of the very first galaxies in the Universe, they are also akin to “galactic fossils.”

Recently, a team of astrophysicists from the Massachusetts Institute of Technology (MIT) observed one of the most ancient of these galaxies (Tucana II) and noticed something unexpected. At the edge of the galaxy, they observed stars in a configuration that suggest that Tucana II has an extended Dark Matter halo. These findings imply that the most ancient galaxies in the Universe had more Dark Matter than previously thought.

Continue reading “Nearby Ancient Dwarf Galaxies Have a Surprising Amount of Dark Matter”

Narrowing Down the Mass of Dark Matter

A section of the virtual universe, a billion light years across, showing how dark matter is distributed in space, with dark matter halos the yellow clumps, interconnected by dark filaments. Cosmic void, shown as the white areas, are the lowest density regions in the Universe. Credit: Joachim Stadel, UZH

Most of the matter of the universe is of a form unknown to physics. While we don’t know what the identity of the dark matter is, a new insight provided by quantum gravity is helping to drastically narrow down its mass.

Continue reading “Narrowing Down the Mass of Dark Matter”

By Measuring Light From Individual Stars Between Galaxy Clusters, Astronomers Find Clues About Dark Matter

dark matter shown in blue
This image from the NASA/ESA Hubble Space Telescope shows the galaxy cluster MACS J0416. This is one of six clusters that was studied by the Hubble Frontier Fields programme, which yielded the deepest images of gravitational lensing ever made. Scientists used intracluster light (visible in blue) to study the distribution of dark matter within the cluster.

Astronomers have been able to measure an extremely faint glow of light within galaxy clusters, and that measurement came with a surprise: it traced the amount of invisible dark matter, something that scientists have been trying to pin down for decades.

Continue reading “By Measuring Light From Individual Stars Between Galaxy Clusters, Astronomers Find Clues About Dark Matter”

Astronomers Hoped to see Evidence of Dark Matter Particles Inside Betelgeuse. No Luck

An artist's impression of Betelgeuse. Its surface is covered by large star spots, which reduce its brightness. During their pulsations, such stars regularly release gas into their surroundings, which condenses into dust. Image Credit: MPIA graphics department

Axions are a hypothetical particle that might explain the existence of dark matter. But it might occasionally interact with normal matter, especially in the cores of stars. A team of physicists have searched for evidence of axions in Betelgeuse and come up with nothing. It doesn’t mean that the axion doesn’t exist, but it does mean that it will be harder to find.

Continue reading “Astronomers Hoped to see Evidence of Dark Matter Particles Inside Betelgeuse. No Luck”

In Theory, Supermassive Black Holes Could get Even More Supermassive

Artist view of a stupendously large black hole. Credit: NASA, ESA, and D. Coe, J. Anders

Our universe contains some enormous black holes. The supermassive black hole in the center of our galaxy has a mass of 4 million Suns, but it’s rather small as galactic black holes go. Many galactic black holes have a billion solar masses, and the most massive known black hole is estimated to have a mass of nearly 70 billion Suns. But just how big can a black hole get?

Continue reading “In Theory, Supermassive Black Holes Could get Even More Supermassive”

Weekly Space Hangout: December 9, 2020 – Casey Dreier: Are Changes Coming to NASA/US Space Policy?

We are pleased to once again welcome Casey Dreier from the Planetary Society to the WSH. Casey will update us (as much as possible) about Space Policy changes that may occur once the new American Presidential administration takes office on January 20, 2021.

Continue reading “Weekly Space Hangout: December 9, 2020 – Casey Dreier: Are Changes Coming to NASA/US Space Policy?”

Neutrinos Have Played a Huge Role in the Evolution of the Universe

Computer simuations show how neutrinos can form cosmic clumpiness. Credit: Yoshikawa, Kohji, et al
Computer simuations show how neutrinos can form cosmic clumpiness. Credit: Yoshikawa, Kohji, et al

It’s often said that we haven’t yet detected dark matter particles. That isn’t quite true. We haven’t detected the particles that comprise cold dark matter, but we have detected neutrinos. Neutrinos have mass and don’t interact strongly with light, so they are a form of dark matter. While they don’t solve the mystery of dark matter, they do play a role in the shape and evolution of our universe.

Continue reading “Neutrinos Have Played a Huge Role in the Evolution of the Universe”

Astronomers find a galaxy that had its dark matter siphoned away

Artist rendering of possible dark matter emissions from the Milky Way. Credit: Christopher Dessert, Nicholas L. Rodd, Benjamin R. Safdi, Zosia Rostomian (Berkeley Lab)

The galaxy NGC 1052-DF4 surprised scientists by having almost no dark matter to complement its stellar population. Recently a team of astronomers has provided an explanation: a nearby galaxy has stripped NGC 1052-DF4 of its dark matter, and is currently in the process of destroying the rest of it too.

Continue reading “Astronomers find a galaxy that had its dark matter siphoned away”

Polarized light from the cosmic background hints at new physics

Visualizing the polarization of the cosmic microwave background. Credit: ESA/Planck Collaboration

The oldest light in the universe is that of the cosmic microwave background (CMB). This remnant glow from the big bang has traveled for more than 13 billion years. Along the way, it has picked up a few tales about the history and evolution of the cosmos. We just need to listen to what it has to say.

Continue reading “Polarized light from the cosmic background hints at new physics”

One of These Pictures Is the Brain, the Other is the Universe. Can You Tell Which is Which?

Left: section of cerebellum, with magnification factor 40x, obtained with electron microscopy (Dr. E. Zunarelli, University Hospital of Modena); right: section of a cosmological simulation, with an extension of 300 million light-years on each side (Vazza et al. 2019 A&A).

“Science is not only compatible with spirituality; it is a profound source of spirituality. When we recognize our place in an immensity of light years and in the passage of ages, when we grasp the intricacy, beauty and subtlety of life, then that soaring feeling, that sense of elation and humility combined, is surely spiritual.” – Carl Sagan “The Demon-Haunted World.”

Learning about the Universe, I’ve felt spiritual moments, as Sagan describes them, as I better understand my connection to the wider everything. Like when I first learned that I was literally made of the ashes of the stars – the atoms in my body spread into the eternal ether by supernovae. Another spiritual moment was seeing this image for the first time:

Hippocampal mouse neuron studded with synaptic connections (yellow), courtesy Lisa Boulanger, from https://www.eurekalert.org/multimedia/pub/81261.php. The green central cell body is ? 10µm in diameter. B. Cosmic web (Springel et al., 2005). Scale bar = 31.25 Mpc/h, or 1.4 × 1024 m. Juxtaposition inspired by Lima (2009).
Continue reading “One of These Pictures Is the Brain, the Other is the Universe. Can You Tell Which is Which?”